HE'S FRACTIONAL DERIVATIVE FOR NON-LINEAR FRACTIONAL HEAT TRANSFER EQUATION

被引:30
|
作者
Wang, Kang-Le [1 ]
Liu, San-Yang [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Peoples R China
来源
THERMAL SCIENCE | 2016年 / 20卷 / 03期
关键词
fractal derivative; variational iteration method; fractional complex transform; fractional heat transfer equation; HOMOTOPY PERTURBATION METHOD; DIFFERENTIAL-EQUATIONS; CONDUCTION;
D O I
10.2298/TSCI1603793W
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper adopts He's fractional derivative for non-linear fractional heat transfer equation. The fractional complex transform and He's variational iteration method are used to solve the fractional equation.
引用
收藏
页码:793 / 796
页数:4
相关论文
共 50 条
  • [1] Analytical solution of non-linear fractional Burger's equation in the framework of different fractional derivative operators
    Malyk, Igor
    Shrahili, Mansour Mohammed A.
    Shafay, Ahmed Roby
    Goswami, Pranay
    Sharma, Shivani
    Dubey, Ravi Shanker
    [J]. RESULTS IN PHYSICS, 2020, 19
  • [2] Modeling the fractional non-linear Schrodinger equation via Liouville-Caputo fractional derivative
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Taneco-Hernandez, M. A.
    Baleanu, Dumitru
    [J]. OPTIK, 2018, 162 : 1 - 7
  • [3] HE'S FRACTIONAL DERIVATIVE FOR THE EVOLUTION EQUATION
    Wang, Kang-Le
    Yao, Shao-Wen
    [J]. THERMAL SCIENCE, 2020, 24 (04): : 2507 - 2513
  • [4] A boundary-value problem for a non-linear equation with a fractional derivative
    Kaikina, E. I.
    Naumkin, P. I.
    Shishmarev, I. A.
    [J]. IZVESTIYA MATHEMATICS, 2009, 73 (06) : 1173 - 1196
  • [5] NON-DIFFERENTIABLE SOLUTIONS FOR NON-LINEAR LOCAL FRACTIONAL HEAT CONDUCTION EQUATION
    Zhang, Sheng
    Zheng, Xiaowei
    [J]. THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S309 - S314
  • [6] HE'S FRACTIONAL DERIVATIVE AND ITS APPLICATION FOR FRACTIONAL FORNBERG-WHITHAM EQUATION
    Wang, Kang-Le
    Liu, San-Yang
    [J]. THERMAL SCIENCE, 2017, 21 (05): : 2049 - 2055
  • [7] Modeling anomalous heat diffusion: Comparing fractional derivative and non-linear diffusivity treatments
    Falcini, F.
    Garra, R.
    Voller, V.
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 137 : 584 - 588
  • [8] Analytical solution of non-linear fractional diffusion equation
    Alqahtani, Obaid
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [9] Analytical solution of non-linear fractional diffusion equation
    Obaid Alqahtani
    [J]. Advances in Difference Equations, 2021
  • [10] APPLICATION OF HE'S FRACTIONAL DERIVATIVE AND FRACTIONAL COMPLEX TRANSFORM FOR TIME FRACTIONAL CAMASSA-HOLM EQUATION
    Anjum, Naveed
    Ain, Qura Tul
    [J]. THERMAL SCIENCE, 2020, 24 (05): : 3023 - 3030