Analytical solution of non-linear fractional Burger's equation in the framework of different fractional derivative operators

被引:21
|
作者
Malyk, Igor [1 ]
Shrahili, Mansour Mohammed A. [2 ]
Shafay, Ahmed Roby [3 ]
Goswami, Pranay [4 ]
Sharma, Shivani [5 ]
Dubey, Ravi Shanker [5 ]
机构
[1] Yuriy Fedkovych Chernivtsi Natl Univ, Dept Syst Anal & Insurance & Financial Math, 28 Unversitetska St, UA-58012 Chernovtsy, Ukraine
[2] King Saud Univ, Dept Stat & Operat Res, Coll Sci, Riyadh, Saudi Arabia
[3] Fayoum Univ, Fac Sci, Math Dept, Al Fayyum, Egypt
[4] Dr BR Ambedkar Univ Delhi, Sch Liberal Studies, Delhi 110006, India
[5] AMITY Univ, Dept Math, AMITY Sch Appl Sci, Jaipur 302002, Rajasthan, India
关键词
Fractional calculus; Burger's equation; Yang-Abdel-Cattani; Atangana-Baleanu; Caputo-Fabrizio; Liouville Caputo operator; MODEL;
D O I
10.1016/j.rinp.2020.103397
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we extend the Burger's equation to the time-fractional Burger's equation based on different derivative operators as Yang-Abdel-Cattani, Atangana-Baleanu, Caputo-Fabrizio, and Liouville-Caputo. The analytical solutions for these different time-fractional Burger's equation are determined by employing the delta-Homotopy Analysis Transform Method. Further, we study the comparison of analytical solutions obtained from different derivative operators numerically and graphically.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Analytical solution of non-linear fractional diffusion equation
    Obaid Alqahtani
    [J]. Advances in Difference Equations, 2021
  • [2] Analytical solution of non-linear fractional diffusion equation
    Alqahtani, Obaid
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [3] HE'S FRACTIONAL DERIVATIVE FOR NON-LINEAR FRACTIONAL HEAT TRANSFER EQUATION
    Wang, Kang-Le
    Liu, San-Yang
    [J]. THERMAL SCIENCE, 2016, 20 (03): : 793 - 796
  • [4] Nonperturbative analytical solution of the time fractional nonlinear Burger’s equation
    T. Sutradhar
    B. K. Datta
    R. K. Bera
    [J]. Indian Journal of Physics, 2009, 83 : 1681 - 1690
  • [5] Nonperturbative analytical solution of the time fractional nonlinear Burger's equation
    Sutradhar, T.
    Datta, B. K.
    Bera, R. K.
    [J]. INDIAN JOURNAL OF PHYSICS, 2009, 83 (12) : 1681 - 1690
  • [6] Analytical Solution with Tanh-Method and Fractional Sub-Equation Method for Non-Linear Partial Differential Equations and Corresponding Fractional Differential Equation Composed With Jumarie Fractional Derivative
    Ghosh, Uttam
    Sengupta, Srijan
    Sarkar, Susmita
    Das, Shantanu
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (03): : 11 - 31
  • [7] APPROXIMATE ANALYTICAL SOLUTION OF TIME-FRACTIONAL NON-LINEAR HEAT EQUATION VIA FRACTIONAL POWER SERIES METHOD
    Deng, Shuxian
    Ge, Xinxin
    [J]. THERMAL SCIENCE, 2022, 26 (03): : 2637 - 2643
  • [8] Modeling the fractional non-linear Schrodinger equation via Liouville-Caputo fractional derivative
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Taneco-Hernandez, M. A.
    Baleanu, Dumitru
    [J]. OPTIK, 2018, 162 : 1 - 7
  • [9] A boundary-value problem for a non-linear equation with a fractional derivative
    Kaikina, E. I.
    Naumkin, P. I.
    Shishmarev, I. A.
    [J]. IZVESTIYA MATHEMATICS, 2009, 73 (06) : 1173 - 1196
  • [10] Analytic Solution of the Fractional Order Non-linear Schrodinger Equation and the Fractional Order Klein Gordon Equation
    Ali, Md Ramjan
    Ghosh, Uttam
    Sarkar, Susmita
    Das, Shantanu
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2022, 30 (03) : 499 - 512