Gyrokinetic simulations of turbulent transport: size scaling and chaotic behaviour

被引:21
|
作者
Villard, L. [2 ]
Bottino, A. [1 ]
Brunner, S. [2 ]
Casati, A. [2 ]
Chowdhury, J. [3 ]
Dannert, T. [1 ]
Ganesh, R. [3 ]
Garbet, X. [4 ]
Goerler, T. [1 ]
Grandgirard, V. [4 ]
Hatzky, R. [1 ]
Idomura, Y. [5 ]
Jenko, F. [1 ]
Jolliet, S. [5 ]
Aghdam, S. Khosh [2 ]
Lapillonne, X. [2 ]
Latu, G. [4 ]
McMillan, B. F. [2 ]
Merz, F. [1 ]
Sarazin, Y. [4 ]
Tran, T. M. [2 ]
Vernay, T. [2 ]
机构
[1] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany
[2] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Switzerland, CH-1015 Lausanne, Switzerland
[3] Inst Plasma Res, Bhat, Ghandinagar, India
[4] EURATOM, IRFM, CEA, F-13108 St Paul Les Durance, France
[5] Japan Atom Energy Agcy, Tokyo 1100015, Japan
关键词
GRADIENT-DRIVEN TURBULENCE; IN-CELL SIMULATIONS; PLASMA TURBULENCE; PARTICLE SIMULATIONS; ENTROPY PRODUCTION; RADIAL STRUCTURE; PIC SIMULATION; DISSIPATION; MODE; CODE;
D O I
10.1088/0741-3335/52/12/124038
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Important steps towards the understanding of turbulent transport have been made with the development of the gyrokinetic framework for describing turbulence and with the emergence of numerical codes able to solve the set of gyrokinetic equations. This paper presents some of the main recent advances in gyrokinetic theory and computing of turbulence. Solving 5D gyrokinetic equations requires state-of-the-art high performance computing techniques involving massively parallel computers and parallel scalable algorithms. The various numerical schemes that have been explored until now, Lagrangian, Eulerian and semi-Lagrangian, each have their advantages and drawbacks. A past controversy regarding the finite size effect (finite rho(*)) in ITG turbulence has now been resolved. It has triggered an intensive benchmarking effort and careful examination of the convergence properties of the different numerical approaches. Now, both Eulerian and Lagrangian global codes are shown to agree and to converge to the flux-tube result in the rho(*) -> 0 limit. It is found, however, that an appropriate treatment of geometrical terms is necessary: inconsistent approximations that are sometimes used can lead to important discrepancies. Turbulent processes are characterized by a chaotic behaviour, often accompanied by bursts and avalanches. Performing ensemble averages of statistically independent simulations, starting from different initial conditions, is presented as a way to assess the intrinsic variability of turbulent fluxes and obtain reliable estimates of the standard deviation. Further developments concerning non-adiabatic electron dynamics around mode-rational surfaces and electromagnetic effects are discussed.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Verification of a quasi-linear model for gyrokinetic turbulent transport
    Staebler, G. M.
    Belli, E. A.
    Candy, J.
    Kinsey, J. E.
    Dudding, H.
    Patel, B.
    NUCLEAR FUSION, 2021, 61 (11)
  • [32] A subgrid model for electron-scale turbulent transport in global ion-scale gyrokinetic simulations of tokamak plasmas
    Tirkas, S.
    Chen, Y.
    Parker, S.
    PHYSICS OF PLASMAS, 2025, 32 (03)
  • [33] Plasma beta dependence of turbulent transport suggesting an advantage of weak magnetic shear from local and global gyrokinetic simulations
    Ishizawa, A.
    Kishimoto, Y.
    Imadera, K.
    Nakamura, Y.
    Maeyama, S.
    NUCLEAR FUSION, 2024, 64 (06)
  • [34] A minimal collision operator for implementing neoclassical transport in gyrokinetic simulations
    Garbet, X.
    Dif-Pradalier, G.
    Nguyen, C.
    Angelino, P.
    Sarazin, Y.
    Grandgirard, V.
    Ghendrih, P.
    Samain, A.
    THEORY OF FUSION PLASMAS, 2008, 1069 : 271 - 276
  • [35] Gyrokinetic simulations of particle transport in pellet fuelled JET discharges
    Tegnered, D.
    Oberparleiter, M.
    Nordman, H.
    Strand, P.
    Garzotti, L.
    Lupelli, I.
    Roach, C. M.
    Romanelli, M.
    Valovic, M.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (10)
  • [36] Ion transport barriers triggered by plasma polarization in gyrokinetic simulations
    Strugarek, A.
    Sarazin, Y.
    Zarzoso, D.
    Abiteboul, J.
    Brun, A. S.
    Cartier-Michaud, T.
    Dif-Pradalier, G.
    Garbet, X.
    Ghendrih, Ph
    Grandgirard, V.
    Latu, G.
    Passeron, C.
    Thomine, O.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (07)
  • [37] Gyrokinetic simulations of neoclassical transport using a minimal collision operator
    Dif-Pradalier, G.
    Grandgirard, V.
    Sarazin, Y.
    Garbet, X.
    Ghendrih, Ph.
    Angelino, P.
    THEORY OF FUSION PLASMAS, 2008, 1069 : 53 - 63
  • [38] Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport
    Esteve, D.
    Sarazin, Y.
    Garbet, X.
    Grandgirard, V.
    Breton, S.
    Donnel, P.
    Asahi, Y.
    Bourdelle, C.
    Dif-Pradalier, G.
    Ehrlacher, C.
    Emeriau, C.
    Ghendrih, Ph.
    Gillot, C.
    Latu, G.
    Passeron, C.
    NUCLEAR FUSION, 2018, 58 (03)
  • [39] Short chaotic strings and their behaviour in the scaling region
    Groote, Stefan
    Veermaee, Hardi
    CHAOS SOLITONS & FRACTALS, 2009, 41 (05) : 2354 - 2359
  • [40] Electron heat transport from stochastic fields in gyrokinetic simulations
    Wang, E.
    Nevins, W. M.
    Candy, J.
    Hatch, D.
    Terry, P.
    Guttenfelder, W.
    PHYSICS OF PLASMAS, 2011, 18 (05)