Short chaotic strings and their behaviour in the scaling region

被引:5
|
作者
Groote, Stefan [1 ,2 ]
Veermaee, Hardi [1 ]
机构
[1] Teoreetilise Fuusika Inst, EE-51010 Tartu, Estonia
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
关键词
COUPLED MAP LATTICES; LARGEST LYAPUNOV EXPONENT; DENSITIES; SPECTRUM; FIELD; LAW;
D O I
10.1016/j.chaos.2008.09.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Coupled map lattices are a paradigm of higher-dimensional dynamical systems exhibiting spatio-temporal chaos. A special case of non-hyperbolic maps are one-dimensional map lattices of coupled Chebyshev maps with periodic boundary conditions, called chaotic strings. In this short note we show that the fine structure of the self energy of this chaotic string in the scaling region (i.e. for very small coupling) is retained if we reduce the length of the string to three lattice points. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2354 / 2359
页数:6
相关论文
共 50 条
  • [1] Scaling Region in Desynchronous Coupled Chaotic Maps
    LI Xiao--Wen
    XUE Yu
    SHI Peng--Liang
    HU Gang Department of Physics
    CommunicationsinTheoreticalPhysics, 2005, 44 (10) : 643 - 645
  • [2] Scaling region in desynchronous coupled chaotic maps
    Li, XW
    Xue, Y
    Shi, PL
    Hu, G
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (04) : 643 - 645
  • [3] Short strings and gluon propagator in the infrared region
    Chernodub, MN
    Gubarev, FV
    Polikarpov, MI
    Zakharov, VI
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 470 - 475
  • [4] Gyrokinetic simulations of turbulent transport: size scaling and chaotic behaviour
    Villard, L.
    Bottino, A.
    Brunner, S.
    Casati, A.
    Chowdhury, J.
    Dannert, T.
    Ganesh, R.
    Garbet, X.
    Goerler, T.
    Grandgirard, V.
    Hatzky, R.
    Idomura, Y.
    Jenko, F.
    Jolliet, S.
    Aghdam, S. Khosh
    Lapillonne, X.
    Latu, G.
    McMillan, B. F.
    Merz, F.
    Sarazin, Y.
    Tran, T. M.
    Vernay, T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (12)
  • [5] Disordered chaotic strings
    Schaefer, Mirko
    Greiner, Martin
    CHAOS SOLITONS & FRACTALS, 2011, 44 (1-3) : 93 - 97
  • [6] Discrete symmetries of chaotic strings
    Schaefer, Mirko
    Beck, Christian
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (02): : 253 - 268
  • [7] Renormalization aspects of chaotic strings
    Groote, S.
    Veermaee, H.
    Beck, C.
    3QUANTUM: ALGEBRA GEOMETRY INFORMATION (QQQ CONFERENCE 2012), 2014, 532
  • [8] Chaotic Strings in AdS/CFT
    de Boer, Jan
    Llabres, Eva
    Pedraza, Juan F.
    Vegh, David
    PHYSICAL REVIEW LETTERS, 2018, 120 (20)
  • [9] Chaotic sources and percolation of strings
    del Moral, F
    Pajares, C
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 92 : 95 - 100
  • [10] Scaling Density of Axion Strings
    Hindmarsh, Mark
    Lizarraga, Joanes
    Lopez-Eiguren, Asier
    Urrestilla, Jon
    PHYSICAL REVIEW LETTERS, 2020, 124 (02)