Short chaotic strings and their behaviour in the scaling region

被引:5
|
作者
Groote, Stefan [1 ,2 ]
Veermaee, Hardi [1 ]
机构
[1] Teoreetilise Fuusika Inst, EE-51010 Tartu, Estonia
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
关键词
COUPLED MAP LATTICES; LARGEST LYAPUNOV EXPONENT; DENSITIES; SPECTRUM; FIELD; LAW;
D O I
10.1016/j.chaos.2008.09.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Coupled map lattices are a paradigm of higher-dimensional dynamical systems exhibiting spatio-temporal chaos. A special case of non-hyperbolic maps are one-dimensional map lattices of coupled Chebyshev maps with periodic boundary conditions, called chaotic strings. In this short note we show that the fine structure of the self energy of this chaotic string in the scaling region (i.e. for very small coupling) is retained if we reduce the length of the string to three lattice points. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2354 / 2359
页数:6
相关论文
共 50 条
  • [21] Scaling solutions of wiggly cosmic strings
    Almeida, A. R. R.
    Martins, C. J. A. P.
    SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 1851 - 1870
  • [22] Scaling solutions of wiggly cosmic strings
    Almeida, A. R. R.
    Martins, C. J. A. P.
    PHYSICAL REVIEW D, 2021, 104 (04)
  • [23] A novel method to identify the scaling region for chaotic time series correlation dimension calculation
    JI CuiCui1
    2 Institute of Medical and Biological Engineering
    ChineseScienceBulletin, 2011, 56 (09) : 927 - 934
  • [24] A novel method to identify the scaling region for chaotic time series correlation dimension calculation
    Ji CuiCui
    Zhu Hua
    Jiang Wei
    CHINESE SCIENCE BULLETIN, 2011, 56 (09): : 925 - 932
  • [25] Torsional behaviour of cello strings
    Woodhouse, J
    Loach, AR
    ACUSTICA, 1999, 85 (05): : 734 - 740
  • [26] Chaotic behaviour of the short-term variations in ozone column observed in Arctic
    Petkov, Boyan H.
    Vitale, Vito
    Mazzola, Mauro
    Lanconelli, Christian
    Lupi, Angelo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 26 (1-3) : 238 - 249
  • [27] Chaotic scattering and capture of strings by a black hole
    Frolov, AV
    Larsen, AL
    CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (11) : 3717 - 3724
  • [28] A SCALING LAW CHAOTIC SYSTEM
    Yang, Xiao-Jun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (03)
  • [29] SCALING BEHAVIOR OF CHAOTIC FLOWS
    HUBERMAN, BA
    RUDNICK, J
    PHYSICAL REVIEW LETTERS, 1980, 45 (03) : 154 - 156
  • [30] Deeper look into short strings
    Gromov, Nikolay
    Valatka, Saulius
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (03):