H(Z/pk) AS A THOM SPECTRUM AND TOPOLOGICAL HOCHSCHILD HOMOLOGY

被引:0
|
作者
Kitchloo, Nitu [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
RING SPECTRA;
D O I
10.1090/proc/14968
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short note we study the topological Hochschild homology of Eilenberg-MacLane spectra for finite cyclic groups. In particular, we show that the Eilenberg-MacLane spectrum H(Z/p(k)) is a Thom spectrum for any prime p (except, possibly, when p = k = 2) and we also compute its topological Hoschshild homology. This yields a short proof of the results obtained by Brun [J. Pure Appl. Algebra 148 (2000), pp. 29-76], and Pirashvili [Comm. Algebra 23 (1995), pp. 1545-1549] except for the anomalous case p = k = 2.
引用
收藏
页码:3647 / 3651
页数:5
相关论文
共 50 条
  • [21] The topological Hochschild homology of the Gaussian integers
    Lindenstrauss, A
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1996, 118 (05) : 1011 - 1036
  • [22] Symmetric spectra and topological Hochschild homology
    Shipley, B
    [J]. K-THEORY, 2000, 19 (02): : 155 - 183
  • [23] On the multiplicative structure of topological Hochschild homology
    Brun, Morten
    Fiedorowicz, Zbigniew
    Vogt, Rainer M.
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 1633 - 1650
  • [24] A NOTE ON THE HOCHSCHILD HOMOLOGY AND CYCLIC HOMOLOGY OF A TOPOLOGICAL ALGEBRA
    HUBL, R
    [J]. MANUSCRIPTA MATHEMATICA, 1992, 77 (01) : 63 - 70
  • [25] Extension DGAs and topological Hochschild homology
    Bayindir, Haldun Ozgur
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (02): : 895 - 932
  • [26] Topological Hochschild homology and the condition of Hochschild-Kostant-Rosenberg
    Larsen, M
    Lindenstrauss, A
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) : 1627 - 1638
  • [27] Higher Hochschild Homology, Topological Chiral Homology and Factorization Algebras
    Ginot, Gregory
    Tradler, Thomas
    Zeinalian, Mahmoud
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (03) : 635 - 686
  • [28] Higher Hochschild Homology, Topological Chiral Homology and Factorization Algebras
    Grégory Ginot
    Thomas Tradler
    Mahmoud Zeinalian
    [J]. Communications in Mathematical Physics, 2014, 326 : 635 - 686
  • [29] On higher topological Hochschild homology of rings of integers
    Dundas, Bjorn Ian
    Lindenstrauss, Ayelet
    Richter, Birgit
    [J]. MATHEMATICAL RESEARCH LETTERS, 2018, 25 (02) : 489 - 507
  • [30] Topological Hochschild homology and the Bass trace conjecture
    Berrick, A. J.
    Hesselholt, Lars
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 704 : 169 - 185