Fractality of largest clusters and the percolation transition in power-law diluted chains

被引:4
|
作者
Albuquerque, SS [1 ]
de Moura, FABF
Lyra, ML
de Souza, AJF
机构
[1] Univ Fed Alagoas, Dept Fis, BR-57072970 Maceio, AL, Brazil
[2] Univ Fed Rural Pernambuco, Dept Fis & Matemat, BR-52171030 Recife, PE, Brazil
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 01期
关键词
D O I
10.1103/PhysRevE.72.016116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Relying on the fractal character of the largest clusters at criticality, we employ a finite-size scaling analysis to obtain an accurate phase-diagram of the percolation transition in chains with bond concentration decaying as a power-law on the form 1/r(1+sigma). For the particular case of sigma=1, no percolation transition is observed to occur at a finite dilution, in contrast with the finite temperature Kosterlitz-Thouless transition exhibited in Ising and Potts chains with inverse square-law couplings. The fractal dimension of the critical percolation cluster is found to follow distinct dependencies on the decay exponent being numerically fitted by d(f)=0.35+4 sigma/5 for 0 <sigma < 1/2 and d(f)=(1+sigma)/2 for 1/2 <sigma < 1. We also compute average mass ratios of the two largest clusters at criticality.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Quantum percolation in power-law diluted chains
    Lima, RPA
    Lyra, ML
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 297 (1-2) : 157 - 163
  • [2] Quantum percolation of one-electron states in power-law diluted chains
    da Silva, M. P., Jr.
    Albuquerque, S. S.
    de Moura, F. A. B. F.
    Lyra, M. L.
    BRAZILIAN JOURNAL OF PHYSICS, 2008, 38 (01) : 43 - 47
  • [3] Transport on percolation clusters with power-law distributed bond strengths
    Alava, M
    Moukarzel, CF
    PHYSICAL REVIEW E, 2003, 67 (05):
  • [4] Bootstrap Percolation in Power-Law Random Graphs
    Hamed Amini
    Nikolaos Fountoulakis
    Journal of Statistical Physics, 2014, 155 : 72 - 92
  • [5] Bootstrap Percolation in Power-Law Random Graphs
    Amini, Hamed
    Fountoulakis, Nikolaos
    JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (01) : 72 - 92
  • [6] INVASION PERCOLATION ON POWER-LAW BRANCHING PROCESSES
    Gundlach, Rowel
    van der Hofstad, Remco
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (03): : 3018 - 3092
  • [7] Percolation and fire spread with power-law flame radiations
    Khelloufi, K.
    Baara, Y.
    Zekri, N.
    EPL, 2013, 103 (02)
  • [8] Testing power-law cosmology with galaxy clusters
    Zhu, Zong-Hong
    Hu, M.
    Alcaniz, J. S.
    Liu, Y. -X.
    ASTRONOMY & ASTROPHYSICS, 2008, 483 (01) : 15 - 18
  • [9] Resonant localized states and quantum percolation on random chains with power-law-diluted long-range couplings
    de Albuquerque, S. S.
    de Moura, F. A. B. F.
    Lyra, M. L.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (20)
  • [10] Power-law sensitivity to initial conditions within a logisticlike family of maps: fractality and nonextensivity
    Costa, U.M.S.
    Lyra, M.L.
    Plastino, A.R.
    Tsallis, C.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 56 (1-A pt A):