Analysis of the Gibbs phenomenon in stationary subdivision schemes

被引:10
|
作者
Amat, Sergio [1 ]
Ruiz, Juan [2 ]
Carlos Trillo, J. [1 ]
Yanez, Dionisio F. [3 ,4 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Univ Alcala, Dept Matemat, Madrid, Spain
[3] Univ Catolica Valencia, Campus Capacitas, Valencia, Spain
[4] Univ Catolica Valencia, CC NN, Dept Matemat, CC SS Aplicadas Educ, Valencia, Spain
关键词
Binary subdivision; Non-negative masks; B-spline subdivision schemes; Deslauriers-Dubuc subdivision schemes;
D O I
10.1016/j.aml.2017.08.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper sufficient conditions to determine if a stationary subdivision scheme produces Gibbs oscillations close to discontinuities are presented. It consists of the positivity of the partial sums of the values of the mask. We apply the conditions to non-negative masks and analyze (numerically when the sufficient conditions are not satisfied) the Gibbs phenomenon in classical and recent subdivision schemes like B-splines, Deslauriers and Dubuc interpolation subdivision schemes and the schemes proposed in Siddiqi and Ahmad (2008). (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:157 / 163
页数:7
相关论文
共 50 条
  • [31] Analysis and Convergence of Hermite Subdivision Schemes
    Bin Han
    Foundations of Computational Mathematics, 2023, 23 : 165 - 218
  • [32] Stationary binary subdivision schemes using radial basis function interpolation
    Lee, Byung-Gook
    Lee, Yeon Ju
    Yoon, Jungho
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (1-3) : 57 - 72
  • [33] Ternary approximating non-stationary subdivision schemes for curve design
    Siddiqi, Shahid S.
    Younis, Muhammad
    OPEN ENGINEERING, 2014, 4 (04): : 371 - 378
  • [34] A family of non-stationary subdivision schemes reproducing exponential polynomials
    Jeong, Byeongseon
    Lee, Yeon Ju
    Yoon, Jungho
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 207 - 219
  • [35] Stationary binary subdivision schemes using radial basis function interpolation
    Byung-Gook Lee
    Yeon Ju Lee
    Jungho Yoon
    Advances in Computational Mathematics, 2006, 25 : 57 - 72
  • [36] Shape Preservation of the Stationary 4-Point Quaternary Subdivision Schemes
    Pervez, Khurram
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (03): : 249 - 264
  • [37] Family of odd point non-stationary subdivision schemes and their applications
    Abdul Ghaffar
    Zafar Ullah
    Mehwish Bari
    Kottakkaran Sooppy Nisar
    Dumitru Baleanu
    Advances in Difference Equations, 2019
  • [38] Family of odd point non-stationary subdivision schemes and their applications
    Ghaffar, Abdul
    Ullah, Zafar
    Bari, Mehwish
    Nisar, Kottakkaran Sooppy
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2019,
  • [39] On a nonlinear 4-point quaternary approximating subdivision scheme eliminating the Gibbs phenomenon
    Amat S.
    Liandrat J.
    SeMA Journal, 2013, 62 (1): : 15 - 25
  • [40] STATIONARY SUBDIVISION
    CAVARETTA, AS
    DAHMEN, W
    MICCHELLI, CA
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 93 (453) : 1 - 186