In this paper sufficient conditions to determine if a stationary subdivision scheme produces Gibbs oscillations close to discontinuities are presented. It consists of the positivity of the partial sums of the values of the mask. We apply the conditions to non-negative masks and analyze (numerically when the sufficient conditions are not satisfied) the Gibbs phenomenon in classical and recent subdivision schemes like B-splines, Deslauriers and Dubuc interpolation subdivision schemes and the schemes proposed in Siddiqi and Ahmad (2008). (c) 2017 Elsevier Ltd. All rights reserved.
机构:
Department of Mathematics Aristotle, University of Thessaloniki ThessalonikiDepartment of Mathematics Aristotle, University of Thessaloniki Thessaloniki
机构:
Univ Malaysia Sabah, Fac Comp & Informat, Software Engn Programme, Jalan UMS, Kota Kinabalu 88400, Malaysia
Univ Malaysia Sabah, Fac Comp & Informat, Data Technol & Applicat DaTA Res Lab, Jalan UMS, Kota Kinabalu 88400, MalaysiaUniv Malaysia Sabah, Fac Comp & Informat, Software Engn Programme, Jalan UMS, Kota Kinabalu 88400, Malaysia
Karim, Samsul Ariffin Abdul
论文数: 引用数:
h-index:
机构:
Khan, Faheem
论文数: 引用数:
h-index:
机构:
Mustafa, Ghulam
Shahzad, Aamir
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sargodha, Dept Math, Sargodha 40100, PakistanUniv Malaysia Sabah, Fac Comp & Informat, Software Engn Programme, Jalan UMS, Kota Kinabalu 88400, Malaysia