Analysis of the Gibbs phenomenon in stationary subdivision schemes

被引:10
|
作者
Amat, Sergio [1 ]
Ruiz, Juan [2 ]
Carlos Trillo, J. [1 ]
Yanez, Dionisio F. [3 ,4 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Univ Alcala, Dept Matemat, Madrid, Spain
[3] Univ Catolica Valencia, Campus Capacitas, Valencia, Spain
[4] Univ Catolica Valencia, CC NN, Dept Matemat, CC SS Aplicadas Educ, Valencia, Spain
关键词
Binary subdivision; Non-negative masks; B-spline subdivision schemes; Deslauriers-Dubuc subdivision schemes;
D O I
10.1016/j.aml.2017.08.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper sufficient conditions to determine if a stationary subdivision scheme produces Gibbs oscillations close to discontinuities are presented. It consists of the positivity of the partial sums of the values of the mask. We apply the conditions to non-negative masks and analyze (numerically when the sufficient conditions are not satisfied) the Gibbs phenomenon in classical and recent subdivision schemes like B-splines, Deslauriers and Dubuc interpolation subdivision schemes and the schemes proposed in Siddiqi and Ahmad (2008). (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:157 / 163
页数:7
相关论文
共 50 条
  • [1] Gibbs phenomenon for p-ary subdivision schemes
    Jie Zhou
    Hongchan Zheng
    Baoxing Zhang
    Journal of Inequalities and Applications, 2019
  • [2] Gibbs phenomenon for p-ary subdivision schemes
    Zhou, Jie
    Zheng, Hongchan
    Zhang, Baoxing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [3] On a stable family of four-point nonlinear subdivision schemes eliminating the Gibbs phenomenon
    Amat, Sergio
    Ruiz, Juan
    Carlos Trillo, J.
    Yanez, Dionisio F.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 354 : 310 - 325
  • [4] Some New n-Point Ternary Subdivision Schemes without the Gibbs Phenomenon
    Zouaoui, Sofiane
    Amat, Sergio
    Busquier, Sonia
    Jose Legaz, Ma
    MATHEMATICS, 2022, 10 (15)
  • [5] Stationary subdivision schemes reproducing polynomials
    Choi, SW
    Lee, BG
    Lee, YJ
    Yoon, J
    COMPUTER AIDED GEOMETRIC DESIGN, 2006, 23 (04) : 351 - 360
  • [6] Continuity analysis and construction of uniform stationary univariate subdivision schemes
    Department of Mathematics, University of Science and Technology of China, Hefei 230026, China
    Ruan Jian Xue Bao, 2006, 3 (559-567):
  • [7] Stationary and Non-Stationary Univariate Subdivision Schemes
    Asghar, Muhammad
    Mustafa, Ghulam
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2018, 50 (03): : 25 - 42
  • [8] Three point stationary and non-stationary subdivision schemes
    Daniel, Sunita
    Shunmugaraj, P.
    GEOMETRIC MODELING & IMAGING: MODERN TECHNIQUES AND APPLICATIONS, 2008, : 3 - 8
  • [9] Some non-stationary subdivision schemes
    Daniel, Sunita
    Shunmugaraj, P.
    GMAI 2007: GEOMETRIC MODELING AND IMAGING, PROCEEDINGS, 2007, : 33 - +
  • [10] High Accuracy Compact Schemes and Gibbs' Phenomenon
    Tapan K. Sengupta
    G. Ganerwal
    Anurag Dipankar
    Journal of Scientific Computing, 2004, 21 : 253 - 268