Simplified wake modelling for wind farm load prediction

被引:1
|
作者
de Vaal, Jacobus B. [1 ,2 ]
Muskulus, Michael [1 ]
机构
[1] Norwegian Univ Sci & Technol, Inst Civil & Environm Engn, Trondheim, Norway
[2] Inst Energy Technol IFE, Wind Energy, Kjeller, Norway
来源
EERA DEEPWIND'2021 | 2021年 / 2018卷
关键词
D O I
10.1088/1742-6596/2018/1/012012
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a simple numerical wind farm model, where pragmatic choices are made in the modelling of underlying physical processes, with the aim of making useful power production and wind turbine load estimates. The numerical model decomposes the wind farm, inspired by the approach of the dynamic wake meandering model (DWM), into simple sub-models for a single wake deficit (1D Gaussian), wake meandering (statistical), and wake added turbulence (eddy viscosity based). Particular attention is given to selecting a momentum conserving wake summation method, because of its critical role in coupling the influence of individual wakes. Results are presented to illustrate the influence that wake summation methods have on equilibrium velocity and power production in a row of turbines, for different inter-turbine spacing and inflow velocities. Comparisons against published data from the Lillgrund wind farm illustrate that the suggested modelling approach reproduces important trends observed in the field data.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Wind farm power optimization through wake steering
    Howland, Michael F.
    Lele, Sanjiva K.
    Dabiri, John O.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (29) : 14495 - 14500
  • [42] The impact of wake models on wind farm layout optimization
    Schmidt, Jonas
    Stoevesandt, Bernhard
    WAKE CONFERENCE 2015, 2015, 625
  • [43] Efficient Stochastic Wake Modeling for Wind Farm Control
    Taylor, Tim
    Johnson, Kathryn
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [44] Wind farm layout optimization for wake effect uniformity
    Yang, Kyoungboo
    Kwak, Gyeongil
    Cho, Kyungho
    Huh, Jongchul
    ENERGY, 2019, 183 : 983 - 995
  • [45] Wind Farm Loads under Wake Redirection Control
    Kanev, Stoyan
    Bot, Edwin
    Giles, Jack
    ENERGIES, 2020, 13 (16)
  • [46] A Wake Modeling Paradigm for Wind Farm Design and Control
    Shapiro, Carl R.
    Starke, Genevieve M.
    Meneveau, Charles
    Gayme, Dennice F.
    ENERGIES, 2019, 12 (15)
  • [47] Hierarchical Control of a Wind Farm for Wake Interaction Minimization
    Gionfra, Nicolo
    Siguerdidjane, Houria
    Sandou, Guillaume
    Faille, Damien
    IFAC PAPERSONLINE, 2016, 49 (27): : 330 - 335
  • [48] Wake flow in a wind farm during a diurnal cycle
    Abkar, Mahdi
    Sharifi, Ahmad
    Porte-Agel, Fernando
    JOURNAL OF TURBULENCE, 2016, 17 (04): : 420 - 441
  • [49] The Impact of Wake Effect on the Aggregated Modeling of Wind Farm
    Wei Ling
    Zhu Shou-zhen
    2012 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2012,
  • [50] Comparing satellite SAR and wind farm wake models
    Hasager, C. B.
    Vincent, P.
    Husson, R.
    Mouche, A.
    Badger, M.
    Pena, A.
    Volker, P.
    Badger, J.
    Di Bella, A.
    Palomares, A.
    Cantero, E.
    Correia, P. M. F.
    WAKE CONFERENCE 2015, 2015, 625