Simplified wake modelling for wind farm load prediction

被引:1
|
作者
de Vaal, Jacobus B. [1 ,2 ]
Muskulus, Michael [1 ]
机构
[1] Norwegian Univ Sci & Technol, Inst Civil & Environm Engn, Trondheim, Norway
[2] Inst Energy Technol IFE, Wind Energy, Kjeller, Norway
来源
EERA DEEPWIND'2021 | 2021年 / 2018卷
关键词
D O I
10.1088/1742-6596/2018/1/012012
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a simple numerical wind farm model, where pragmatic choices are made in the modelling of underlying physical processes, with the aim of making useful power production and wind turbine load estimates. The numerical model decomposes the wind farm, inspired by the approach of the dynamic wake meandering model (DWM), into simple sub-models for a single wake deficit (1D Gaussian), wake meandering (statistical), and wake added turbulence (eddy viscosity based). Particular attention is given to selecting a momentum conserving wake summation method, because of its critical role in coupling the influence of individual wakes. Results are presented to illustrate the influence that wake summation methods have on equilibrium velocity and power production in a row of turbines, for different inter-turbine spacing and inflow velocities. Comparisons against published data from the Lillgrund wind farm illustrate that the suggested modelling approach reproduces important trends observed in the field data.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity
    Qian, Guo-Wei
    Ishihara, Takeshi
    ENERGY, 2021, 220
  • [22] Power Prediction of Wind Farm Considering the Wake Effect and its Boundary Layer Compensation
    Tang, Zao
    Liu, Jia
    Ni, Jielong
    Zhang, Jimiao
    Zeng, Pingliang
    Ren, Pengzhe
    Su, Tong
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2024, 9 (06) : 19 - 29
  • [23] A SIMPLIFIED FREE WAKE METHOD FOR HORIZONTAL-AXIS WIND TURBINE PERFORMANCE PREDICTION
    AFJEH, AA
    KEITH, TG
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 1986, 108 (04): : 400 - 406
  • [24] Wind Farm Control Optimisation Under Load Constraints Via Surrogate Modelling
    Liew, Jaime
    Riva, Riccardo
    Friis-Moller, Mikkel
    Gocmen, Tuhfe
    SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2024, 2024, 2767
  • [25] Combining wake redirection and derating strategies in a load-constrained wind farm power maximization
    Croce, Alessandro
    Cacciola, Stefano
    Isella, Federico
    WIND ENERGY SCIENCE, 2024, 9 (05) : 1211 - 1227
  • [26] On wake modeling, wind-farm gradients, and AEP predictions at the Anholt wind farm
    Pena, Alfredo
    Hansen, Kurt Schaldemose
    Ott, Soren
    van der Laan, Maarten Paul
    WIND ENERGY SCIENCE, 2018, 3 (01) : 191 - 202
  • [27] Research on wind turbine wake model and overlapping in wind farm
    Zeng, Lihua
    Wang, Feng
    Liu, Deyou
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2011, 31 (19): : 37 - 42
  • [28] Evaluating Wake Models for Wind Farm Control
    Annoni, Jennifer
    Seiler, Peter
    Johnson, Kathryn
    Fleming, Paul
    Gebraad, Pieter
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 2517 - 2523
  • [29] Wake Effect Quantification using SCADA Data and LES Modelling of an Operational Offshore Wind Farm
    Chanprasert, Warit
    Sharma, Rajnish N.
    Cater, John E.
    Norris, Stuart E.
    SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2024, 2024, 2767
  • [30] Effect of Coriolis force on a wind farm wake
    Gadde, Srinidhi Nagarada
    Stevens, Richard J. A. M.
    WAKE CONFERENCE, 2019, 1256