Automatic Identification of Mantle Seismic Phases Using a Convolutional Neural Network

被引:10
|
作者
Garcia, J. A. [1 ]
Waszek, L. [1 ,2 ]
Tauzin, B. [3 ,4 ,5 ]
Schmerr, N. [6 ]
机构
[1] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA
[2] James Cook Univ, Phys Sci, Douglas, Qld, Australia
[3] Univ Lyon, Lab Geol Lyon Terre Planastes Environm, Univ Lyon 1, Villeurbanne, France
[4] Ecole Normale Super Lyon, UMR CNRS 5276, Villeurbanne, France
[5] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT, Australia
[6] Univ Maryland, Dept Geol, College Pk, MD 20742 USA
基金
澳大利亚研究理事会;
关键词
Body waves; computational seismology; fuzzy logic; machine learning; mantle; neural networks; SYSTEM MG2SIO4-FE2SIO4; DISCONTINUITIES; LOCATION; PICKING;
D O I
10.1029/2020GL091658
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Typical seismic waveform data sets comprise hundreds of thousands to millions of records. Compilation is performed by time-consuming handpicking of phase arrival times, or signal processing algorithms such as cross-correlation. The latter generally underperform compared to handpicking. However, differences in picking methods creates variations in models and interpretation of Earth's structure. Here, we exploit the pattern recognition capabilities of Convolutional Neural Networks (CNN). Using a large handpicked data set, we train a CNN model to identify the seismic shear phase SS. This accelerates, automates, and makes consistent data compilation, a task usually completed by visual inspection and influenced by scientists' choices. The CNN model is employed to identify precursors to SS generated by mantle discontinuities. It identifies precursors in stacked and individual seismograms, producing new measurements of the mantle transition zone with quality comparable to handpicked data. This rapid acquisition of high-quality observations has implications for automation of future seismic tomography studies.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Vortex Boundary Identification using Convolutional Neural Network
    Berenjkoub, Marzieh
    Chen, Guoning
    Gunther, Tobias
    2020 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2020), 2020, : 261 - 265
  • [42] Skin Identification Using Deep Convolutional Neural Network
    Oghaz, Mahdi Maktab Dar
    Argyriou, Vasileios
    Monekosso, Dorothy
    Remagnino, Paolo
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I, 2020, 11844 : 181 - 193
  • [43] IDENTIFICATION OF DEFECTIVE CHERRIES USING CONVOLUTIONAL NEURAL NETWORK
    Kaygisiz, Halil
    Cakir, Abdulkadir
    FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (06): : 5492 - 5498
  • [44] Identification of Cattle Breed using the Convolutional Neural Network
    Manoj, Sreenand
    Rakshith, S.
    Kanchana, V
    ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 503 - 507
  • [45] Neuropsychiatric Disorders Identification Using Convolutional Neural Network
    Lin, Chih-Wei
    Ding, Qilu
    MULTIMEDIA MODELING, MMM 2019, PT II, 2019, 11296 : 315 - 327
  • [46] UAV detection and identification using a convolutional neural network
    Stancic, Ivo
    Juric, Toni
    2024 9TH INTERNATIONAL CONFERENCE ON SMART AND SUSTAINABLE TECHNOLOGIES, SPLITECH 2024, 2024,
  • [47] Automatic Bridge Crack Detection Using a Convolutional Neural Network
    Xu, Hongyan
    Su, Xiu
    Wang, Yi
    Cai, Huaiyu
    Cui, Kerang
    Chen, Xiaodong
    APPLIED SCIENCES-BASEL, 2019, 9 (14):
  • [48] Automatic detection of welding defects using the convolutional neural network
    Sizyakin, Roman
    Voronin, Viacheslav
    Gapon, Nikolay
    Zelensky, Aleksandr
    Pizurica, Aleksandra
    AUTOMATED VISUAL INSPECTION AND MACHINE VISION III, 2019, 11061
  • [49] Identification of plant microRNAs using convolutional neural network
    Zhang, Yun
    Huang, Jianghua
    Xie, Feixiang
    Huang, Qian
    Jiao, Hongguan
    Cheng, Wenbo
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [50] Writer Identification and Retrieval Using a Convolutional Neural Network
    Fiel, Stefan
    Sablatnig, Robert
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 26 - 37