Adsorption of frog foam nest proteins at the air-water interface

被引:61
|
作者
Cooper, A [1 ]
Kennedy, MW
Fleming, RI
Wilson, EH
Videler, H
Wokosin, DL
Su, TJ
Green, RJ
Lu, JR
机构
[1] Univ Glasgow, Dept Chem, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Glasgow, Inst Biomed & Life Sci, Glasgow G12 8QQ, Lanark, Scotland
[3] Univ Strathclyde, Ctr Biophot, Strathclyde Inst Biomed Sci, Glasgow, Lanark, Scotland
[4] Univ Manchester, Biol Phys Grp, Manchester, Lancs, England
基金
英国惠康基金;
关键词
D O I
10.1529/biophysj.104.046268
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The surfactant properties of aqueous protein mixtures ( ranaspumins) from the foam nests of the tropical frog Physalaemus pustulosus have been investigated by surface tension, two-photon excitation. uorescence microscopy, specular neutron reflection, and related biophysical techniques. Ranaspumins lower the surface tension of water more rapidly and more effectively than standard globular proteins under similar conditions. Two- photon excitation. uorescence microscopy of nest foams treated with fluorescent marker ( anilinonaphthalene sulfonic acid) shows partitioning of hydrophobic proteins into the air-water interface and allows imaging of the foam structure. The surface excess of the adsorbed protein layers, determined from measurements of neutron reflection from the surface of water utilizing H2O/D2O mixtures, shows a persistent increase of surface excess and layer thickness with bulk concentration. At the highest concentration studied ( 0.5 mg ml(-1)), the adsorbed layer is characterized by three distinct regions: a protruding top layer of similar to20 Angstrom, a middle layer of similar to30 Angstrom, and a more diffuse submerged layer projecting some 25 Angstrom into bulk solution. This suggests a model involving self-assembly of protein aggregates at the air-water interface in which initial foam formation is facilitated by specific surfactant proteins in the mixture, further stabilized by subsequent aggregation and cross-linking into a multilayer surface complex.
引用
收藏
页码:2114 / 2125
页数:12
相关论文
共 50 条
  • [21] Adsorption of actin at the air-water interface:: A monolayer study
    Gicquaud, C
    Chauvet, JP
    Grenier, G
    Tancrède, P
    Coulombe, G
    BIOPOLYMERS, 2003, 70 (03) : 289 - 296
  • [22] Bile salts at the air-water interface: Adsorption and desorption
    Maldonado-Valderrama, J.
    Muros-Cobos, J. L.
    Holgado-Terriza, J. A.
    Cabrerizo-Vilchez, M. A.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2014, 120 : 176 - 183
  • [23] Adsorption of pepsin in octadecylamine matrix at air-water interface
    Kamilya, Tapanendu
    Pal, Prabir
    Talapatra, G. B.
    BIOPHYSICAL CHEMISTRY, 2010, 146 (2-3) : 85 - 91
  • [24] Thermodynamics of iodide adsorption at the instantaneous air-water interface
    Stern, Abraham C.
    Baer, Marcel D.
    Mundy, Christopher J.
    Tobias, Douglas J.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (11):
  • [25] Adsorption of β-Lactoglobulin variants A and B to the air-water interface
    Mackie, AR
    Husband, FA
    Holt, C
    Wilde, PJ
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 1999, 34 (5-6): : 509 - 516
  • [26] Kinetics of protein hydration and adsorption at the air-water interface
    Shibata, A
    Iizuka, Y
    Ueno, S
    Yamashita, T
    PROTEIN ENGINEERING, 1995, 8 (09): : 59 - 59
  • [27] Adsorption behavior of DNA on phosphatidylcholine at the air-water interface
    Qu, Hongjin
    Hao, Changchun
    Zhang, Ziyi
    Xu, Zhuangwei
    Sun, Runguang
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 99 : 505 - 510
  • [28] ADSORPTION OF RIBONUCLEASE AT AIR-WATER INTERFACE AND ON PHOSPHOLIPID MONOLAYERS
    KHAIAT, A
    MILLER, IR
    BIOCHIMICA ET BIOPHYSICA ACTA, 1969, 183 (02) : 309 - +
  • [29] Effect of phospholipid on trichosanthin adsorption at the air-water interface
    Xia, XF
    Wang, F
    Sui, SF
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2001, 1515 (01): : 1 - 11
  • [30] Predicting Adsorption of Organic Chemicals at the Air-Water Interface
    Goss, Kai-Uwe
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (44): : 12256 - 12259