Adsorption of actin at the air-water interface:: A monolayer study

被引:11
|
作者
Gicquaud, C
Chauvet, JP
Grenier, G
Tancrède, P
Coulombe, G
机构
[1] Univ Quebec, Dept Chim Biol, Trois Rivieres, PQ G9A 5H7, Canada
[2] Ecole Cent Lyon, UMR 5621, STMS IfoS, F-69131 Ecully, France
关键词
actin monolayers; actin films; actin interfaces; surface activity; polymerization;
D O I
10.1002/bip.10475
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The intrinsic surface activity of the contractile protein actin has been determined from surface tension measurements using the Wilhelmy hanging-plate method. Actin, a very soluble protein, moves from the subphase to the air-water interface to make a film. In the absence of magnesium, actin is monomeric and is known as G-actin. During the compression the monomers change their conformation or orientation at the interface and they are then pushed reversibly into the subphase upon further compression. No collapse occurs. Actin monomers in the presence of magnesium become activated; at concentrations greater than some critical value, actin polymerizes to form filaments of F-actin. The actin filaments have a higher surface activity than the actin monomers either because they are more hydrophobic or because F-actin, a rigid polymer, is much more efficient at creating excluded volume. The actin filaments then form a rigid film at the interface that collapses when the surface area is decreased. At less than the critical concentration, the actin monomers are present in the subphase in their activated form. However, their concentration increases at the interface during film compression until the critical concentration is reached. The surface pressure isotherm in this case has the characteristics of a G-actin film at the beginning of the compression and of an F-actin film at the end of the compression process. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [1] Study on octadecylamine monolayer at the air-water interface
    Fang, K
    Zou, G
    He, PS
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2002, 15 (04): : 312 - 316
  • [2] Adsorption behavior of DNA onto a cationic surfactant monolayer at the air-water interface
    Hansda, Chaitali
    Hussain, Syed Arshad
    Bhattacharjee, Debajyoti
    Paul, Pabitra Kr.
    SURFACE SCIENCE, 2013, 617 : 124 - 130
  • [3] Hydrodynamics of monolayer domains at the air-water interface
    Lubensky, DK
    Goldstein, RE
    PHYSICS OF FLUIDS, 1996, 8 (04) : 843 - 854
  • [4] Photoisomerization of the monolayer films on the air-water interface
    Koo, CG
    Song, KH
    Park, TG
    Park, KH
    Kwon, YS
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON PROPERTIES AND APPLICATIONS OF DIELECTRIC MATERIALS, VOLS 1 AND 2, 1997, : 335 - 337
  • [5] ADSORPTION OF DNA AT AIR-WATER INTERFACE
    FROMMER, MA
    MILLER, IR
    JOURNAL OF PHYSICAL CHEMISTRY, 1968, 72 (08): : 2862 - &
  • [6] Perfluoroalkyl-n-eicosanes at the air-water interface -: A monolayer study
    Broniatowski, M
    Dynarowicz-Latka, P
    POLISH JOURNAL OF CHEMISTRY, 2004, 78 (07) : 973 - 985
  • [7] MONOLAYER CHARACTERISTICS AND CALCIUM ADSORPTION TO CEREBROSIDE AND CEREBROSIDE SULPHATE ORIENTED AT AIR-WATER INTERFACE
    QUINN, PJ
    SHERMAN, WR
    BIOCHIMICA ET BIOPHYSICA ACTA, 1971, 233 (03) : 734 - &
  • [8] SPREAD MONOLAYER FILMS OF PROTEINS AT AIR-WATER INTERFACE
    BIRDI, KS
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1973, 43 (02) : 545 - 547
  • [9] Crystal Perfection of Particle Monolayer at the Air-Water Interface
    Shinotsuka, Kei
    Kajita, Yasuhito
    Hongo, Koki
    Hatta, Yoshihisa
    LANGMUIR, 2015, 31 (42) : 11452 - 11457
  • [10] ENERGETICS OF SURFACTANT ADSORPTION AT AIR-WATER INTERFACE
    MANKOWICH, AM
    JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1966, 43 (11) : 615 - +