Adsorption of actin at the air-water interface:: A monolayer study

被引:11
|
作者
Gicquaud, C
Chauvet, JP
Grenier, G
Tancrède, P
Coulombe, G
机构
[1] Univ Quebec, Dept Chim Biol, Trois Rivieres, PQ G9A 5H7, Canada
[2] Ecole Cent Lyon, UMR 5621, STMS IfoS, F-69131 Ecully, France
关键词
actin monolayers; actin films; actin interfaces; surface activity; polymerization;
D O I
10.1002/bip.10475
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The intrinsic surface activity of the contractile protein actin has been determined from surface tension measurements using the Wilhelmy hanging-plate method. Actin, a very soluble protein, moves from the subphase to the air-water interface to make a film. In the absence of magnesium, actin is monomeric and is known as G-actin. During the compression the monomers change their conformation or orientation at the interface and they are then pushed reversibly into the subphase upon further compression. No collapse occurs. Actin monomers in the presence of magnesium become activated; at concentrations greater than some critical value, actin polymerizes to form filaments of F-actin. The actin filaments have a higher surface activity than the actin monomers either because they are more hydrophobic or because F-actin, a rigid polymer, is much more efficient at creating excluded volume. The actin filaments then form a rigid film at the interface that collapses when the surface area is decreased. At less than the critical concentration, the actin monomers are present in the subphase in their activated form. However, their concentration increases at the interface during film compression until the critical concentration is reached. The surface pressure isotherm in this case has the characteristics of a G-actin film at the beginning of the compression and of an F-actin film at the end of the compression process. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [32] Role of protein unfolding in monolayer formation on air-water interface
    Tronin, A
    Dubrovsky, T
    Dubrovskaya, S
    Radicchi, G
    Nicolini, C
    LANGMUIR, 1996, 12 (13) : 3272 - 3275
  • [33] The sequential growth mechanism of a protein monolayer at the air-water interface
    Singh, Amarjeet
    Konovalov, Oleg
    Novak, Jiri
    Vorobiev, Alexei
    SOFT MATTER, 2010, 6 (16) : 3826 - 3831
  • [34] Incorporation of β-lactoglobulin in a lipid/porphyrin monolayer at the air-water interface
    da Silva, AMG
    Romao, RS
    Costa, SMB
    CHEMISTRY AND PHYSICS OF LIPIDS, 2004, 127 (01) : 77 - 90
  • [35] Behavior and state of mixed Langmuir monolayer at air-water interface
    Xie, D.
    Jiang, Y.D.
    Wu, Z.M.
    Li, Y.R.
    Proceedings - International Symposium on Electrets, 1999, : 201 - 204
  • [36] Structure of the porphyrazine monolayer at the air-water interface: Computer simulation
    Borodin, A
    Kiselev, M
    PURE AND APPLIED CHEMISTRY, 2004, 76 (01) : 197 - 202
  • [37] Interaction of DPPC monolayer at air-water interface with hydrophobic ions
    Shapovalov, VL
    THIN SOLID FILMS, 1998, 327 : 599 - 602
  • [38] Monolayer and multilayer of a liquid crystal copolysiloxane at the air-water interface
    Mu, J
    Okamoto, H
    Takenaka, S
    Feng, XS
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2000, 172 (1-3) : 87 - 90
  • [39] Orientational phase transition in molecular monolayer on an air-water interface
    Jiang, M
    Zhong, F
    Xing, DY
    Wang, ZD
    Dong, JM
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (14): : 6171 - 6175
  • [40] Interaction between polylysine monolayer and DNA at the air-water interface
    Niwa, M
    Morikawa, M
    Yagi, K
    Higashi, N
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2002, 30 (01) : 47 - 54