Mixtures of robust probabilistic principal component analyzers

被引:44
|
作者
Archambeau, Cedric [1 ]
Delannay, Nicolas [2 ]
Verleysen, Michel [2 ]
机构
[1] UCL, Ctr Computat Stat & Machine Learning, London WC1E 6BT, England
[2] Catholic Univ Louvain, Machine Learning Grp, B-1348 Louvain, Belgium
关键词
mixture model; principal component analysis; dimensionality reduction; robustness to outliers; non-Gaussianity; EM algorithm;
D O I
10.1016/j.neucom.2007.11.029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mixtures of probabilistic principal component analyzers model high-dimensional nonlinear data by combining local linear models. Each mixture component is specifically designed to extract the local principal orientations in the data. An important issue with this generative model is its sensitivity to data lying off the low-dimensional manifold. In order to address this problem, the mixtures of robust probabilistic principal component analyzers are introduced. They take care of atypical points by means of a long tail distribution, the Student-t. It is shown that the resulting mixture model is an extension of the mixture of Gaussians, suitable for both robust clustering and dimensionality reduction. Finally, we briefly discuss how to construct a robust version of the closely related mixture of factor analyzers. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1274 / 1282
页数:9
相关论文
共 50 条
  • [41] MAHALANOBIS KERNEL BASED ON PROBABILISTIC PRINCIPAL COMPONENT
    Fauvel, M.
    Villa, A.
    Chanussot, J.
    Benediktsson, J. A.
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3907 - 3910
  • [42] A review on robust principal component analysis
    Lee, Eunju
    Park, Mingyu
    Kim, Choongrak
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 327 - 333
  • [43] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [44] Bayesian Robust Principal Component Analysis
    Ding, Xinghao
    He, Lihan
    Carin, Lawrence
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3419 - 3430
  • [45] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [46] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    [J]. Neurocomputing, 2022, 391 : 119 - 128
  • [47] Flexible robust principal component analysis
    He, Zinan
    Wu, Jigang
    Han, Na
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (03) : 603 - 613
  • [48] Robust algorithms for principal component analysis
    Yang, TN
    Wang, SD
    [J]. PATTERN RECOGNITION LETTERS, 1999, 20 (09) : 927 - 933
  • [49] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    [J]. NEUROCOMPUTING, 2020, 391 : 119 - 128
  • [50] Robust Discriminative Principal Component Analysis
    Xu, Xiangxi
    Lai, Zhihui
    Chen, Yudong
    Kong, Heng
    [J]. BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 231 - 238