Enhanced finite element scheme for non-linear piezoelectricity

被引:0
|
作者
Kaltenbacher, Manfred [1 ]
Kaltenbacher, Barbara [2 ]
Hegewald, Thomas [1 ]
Lerch, Reinhard [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Sensor Technol, D-8520 Erlangen, Germany
[2] Univ Stuttgart, Math Inst, Stuttgart, Germany
关键词
D O I
10.1109/ULTSYM.2007.427
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
According to a thermodynamically consistent model, we decompose the physical quantities dielectric displacement and mechanical strain into a reversible and an irreversible part. Therewith, we set the irreversible part of the dielectric displacement equal to the electric polarization. The reversible parts of mechanical strain and dielectric displacement are further described by the linear piezoelectric constitutive law. The irreversible polarization is computed from the history of the driving electric field by a Preisach hysteresis operator. Furthermore, the entries of the piezoelectric modulus tensor are assumed to be a function of the irreversible dielectric polarization. This enhanced model for non-linear piezoelectricity has been recently implemented into our Finite Element (FE) software environment. We have applied our FE scheme to the numerical computation of the dynamic behavior of a piezoelectric stack actuator. The obtained results compare well to measured data.
引用
收藏
页码:1697 / +
页数:2
相关论文
共 50 条
  • [31] NON-LINEAR FINITE-ELEMENT ANALYSIS AND ADINA - PREFACE
    BATHE, KJ
    [J]. COMPUTERS & STRUCTURES, 1983, 17 (5-6) : R5 - R5
  • [32] Non-linear finite-element analysis of Iosipescu specimens
    Kumosa, M
    Han, Y
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 1999, 59 (04) : 561 - 573
  • [33] Non-linear finite element modeling of THUNDER piezoelectric actuators
    Taleghani, BK
    Campbell, JF
    [J]. SMART STRUCTURES AND MATERIALS 1999: SMART STRUCTURES AND INTEGRATED SYSTEMS, PTS 1 AND 2, 1999, 3668 : 555 - 566
  • [34] Exploiting inherent parallelism in non-linear finite element analysis
    Jaques, MWS
    Ross, CTF
    Strickland, P
    [J]. COMPUTERS & STRUCTURES, 1996, 58 (04) : 801 - 807
  • [35] NON-LINEAR FINITE-ELEMENT ANALYSIS OF AN AUTOFRETTAGE PROCESS
    TILL, ET
    RAMMERSTORFER, FG
    [J]. COMPUTERS & STRUCTURES, 1983, 17 (5-6) : 857 - 864
  • [36] Strain and stress relation for non-linear finite element simulations
    Ehlers, Soren
    Varsta, Petri
    [J]. THIN-WALLED STRUCTURES, 2009, 47 (11) : 1203 - 1217
  • [37] A non-linear finite element formulation for modeling volumetric growth
    Srinivasan, V
    Perucchio, R
    Srinivasan, R
    Taber, L
    [J]. COMPUTER METHODS IN BIOMECHANICS & BIOMEDICAL ENGINEERING - 2, 1998, : 271 - 278
  • [38] NON-LINEAR FINITE-ELEMENT ANALYSIS OF STEEL FRAMES
    ELZANATY, MH
    MURRAY, DW
    [J]. JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1983, 109 (02): : 353 - 368
  • [39] Non-linear vibration of Timoshenko beams by finite element method
    Rakowski, Jerzy
    Guminiak, Michal
    [J]. Journal of Theoretical and Applied Mechanics (Poland), 2015, 53 (03): : 731 - 743
  • [40] Non-linear analysis of prestressed masonry by finite element method
    Xiong, Feng
    Ying, Fuzhao
    [J]. Chengdu Kejidaxue Xuebao/Journal of Chengdu University of Science and Technology, 2000, 32 (03): : 16 - 20