Spatial Postprocessing of Ensemble Forecasts for Temperature Using Nonhomogeneous Gaussian Regression

被引:56
|
作者
Feldmann, Kira [1 ]
Scheuerer, Michael [2 ]
Thorarinsdottir, Thordis L. [3 ]
机构
[1] Heidelberg Inst Theoret Studies, D-69118 Heidelberg, Germany
[2] NOAA, Boulder, CO USA
[3] Norwegian Comp Ctr, Oslo, Norway
关键词
Ensembles; Probability forecasts; models; distribution; Statistical forecasting; Model output statistics; MODEL OUTPUT STATISTICS; PROBABILISTIC FORECASTS; CALIBRATION; SIMULATION; PREDICTION; MINIMUM;
D O I
10.1175/MWR-D-14-00210.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Statistical postprocessing techniques are commonly used to improve the skill of ensembles from numerical weather forecasts. This paper considers spatial extensions of the well-established nonhomogeneous Gaussian regression (NGR) postprocessing technique for surface temperature and a recent modification thereof in which the local climatology is included in the regression model to permit locally adaptive postprocessing. In a comparative study employing 21-h forecasts from the Consortium for Small Scale Modelling ensemble predictive system over Germany (COSMO-DE), two approaches for modeling spatial forecast error correlations are considered: a parametric Gaussian random field model and the ensemble copula coupling (ECC) approach, which utilizes the spatial rank correlation structure of the raw ensemble. Additionally, the NGR methods are compared to both univariate and spatial versions of the ensemble Bayesian model averaging (BMA) postprocessing technique.
引用
收藏
页码:955 / 971
页数:17
相关论文
共 50 条
  • [41] Comparative Evaluation of Three Schaake Shuffle Schemes in Postprocessing GEFS Precipitation Ensemble Forecasts
    Wu, Limin
    Zhang, Yu
    Adams, Thomas
    Lee, Haksu
    Liu, Yuqiong
    Schaake, John
    JOURNAL OF HYDROMETEOROLOGY, 2018, 19 (03) : 575 - 598
  • [42] Postprocessing of hydrometeorological ensemble forecasts based on multisource precipitation in Ganjiang River basin, China
    Liu, Xin
    Zhang, Liping
    She, Dunxian
    Chen, Jie
    Xia, Jun
    Chen, Xinchi
    Zhao, Tongtiegang
    Journal of Hydrology, 2022, 605
  • [43] A Hybrid Analog-Ensemble-Convolutional-Neural-Network Method for Postprocessing Precipitation Forecasts
    Sha, Yingkai
    Gagne, David John, II
    West, Gregory
    Stull, Roland
    MONTHLY WEATHER REVIEW, 2022, 150 (06) : 1495 - 1515
  • [44] Improvement of Maximum Air Temperature Forecasts Using a Stacking Ensemble Technique
    Zhao, Linna
    Lu, Shu
    Qi, Dan
    ATMOSPHERE, 2023, 14 (03)
  • [45] Calibrated ensemble forecasts of the height of new snow using quantile regression forests and ensemble model output statistics
    Evin, Guillaume
    Lafaysse, Matthieu
    Taillardat, Maxime
    Zamo, Michael
    NONLINEAR PROCESSES IN GEOPHYSICS, 2021, 28 (03) : 467 - 480
  • [46] Effects of Model Resolution and Statistical Postprocessing on Shelter Temperature and Wind Forecasts
    Mueller, M. D.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2011, 50 (08) : 1627 - 1636
  • [47] Calibration and combination of seasonal precipitation forecasts over South America using Ensemble Regression
    Marisol Osman
    Caio A. S. Coelho
    Carolina S. Vera
    Climate Dynamics, 2021, 57 : 2889 - 2904
  • [48] Calibration and combination of seasonal precipitation forecasts over South America using Ensemble Regression
    Osman, Marisol
    Coelho, Caio A. S.
    Vera, Carolina S.
    CLIMATE DYNAMICS, 2021, 57 (9-10) : 2889 - 2904
  • [49] GAUSSIAN MIXTURE MODELS FOR CLUSTERING AND CALIBRATION OF ENSEMBLE WEATHER FORECASTS
    Jouan, Gabriel
    Cuzol, Anne
    Monbet, Valerie
    Monnier, Goulven
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (02): : 309 - 328
  • [50] A Nonhomogeneous Regression-Based Statistical Postprocessing Scheme for Generating Probabilistic Quantitative Precipitation Forecast
    Ghazvinian, Mohammadvaghef
    Zhang, Yu
    Seo, Dong-Jun
    JOURNAL OF HYDROMETEOROLOGY, 2020, 21 (10) : 2275 - 2291