Spatial Postprocessing of Ensemble Forecasts for Temperature Using Nonhomogeneous Gaussian Regression

被引:56
|
作者
Feldmann, Kira [1 ]
Scheuerer, Michael [2 ]
Thorarinsdottir, Thordis L. [3 ]
机构
[1] Heidelberg Inst Theoret Studies, D-69118 Heidelberg, Germany
[2] NOAA, Boulder, CO USA
[3] Norwegian Comp Ctr, Oslo, Norway
关键词
Ensembles; Probability forecasts; models; distribution; Statistical forecasting; Model output statistics; MODEL OUTPUT STATISTICS; PROBABILISTIC FORECASTS; CALIBRATION; SIMULATION; PREDICTION; MINIMUM;
D O I
10.1175/MWR-D-14-00210.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Statistical postprocessing techniques are commonly used to improve the skill of ensembles from numerical weather forecasts. This paper considers spatial extensions of the well-established nonhomogeneous Gaussian regression (NGR) postprocessing technique for surface temperature and a recent modification thereof in which the local climatology is included in the regression model to permit locally adaptive postprocessing. In a comparative study employing 21-h forecasts from the Consortium for Small Scale Modelling ensemble predictive system over Germany (COSMO-DE), two approaches for modeling spatial forecast error correlations are considered: a parametric Gaussian random field model and the ensemble copula coupling (ECC) approach, which utilizes the spatial rank correlation structure of the raw ensemble. Additionally, the NGR methods are compared to both univariate and spatial versions of the ensemble Bayesian model averaging (BMA) postprocessing technique.
引用
收藏
页码:955 / 971
页数:17
相关论文
共 50 条
  • [21] Heteroscedastic Extended Logistic Regression for Postprocessing of Ensemble Guidance
    Messner, Jakob W.
    Mayr, Georg J.
    Zeileis, Achim
    Wilks, Daniel S.
    MONTHLY WEATHER REVIEW, 2014, 142 (01) : 448 - 456
  • [22] Lead-time-continuous statistical postprocessing of ensemble weather forecasts
    Wessel, Jakob Benjamin
    Ferro, Christopher A. T.
    Kwasniok, Frank
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2024, 150 (761) : 2147 - 2167
  • [23] Calibrated Ensemble Forecasts Using Quantile Regression Forests and Ensemble Model Output Statistics
    Taillardat, Maxime
    Mestre, Olivier
    Zamo, Michael
    Naveau, Philippe
    MONTHLY WEATHER REVIEW, 2016, 144 (06) : 2375 - 2393
  • [24] Postprocessing of Medium Range Hydrological Ensemble Forecasts Making Use of Reforecasts
    Van den Bergh, Joris
    Roulin, Emmanuel
    HYDROLOGY, 2016, 3 (02)
  • [25] Ensemble Postprocessing Using Quantile Function Regression Based on Neural Networks and Bernstein Polynomials
    Bremnes, John Bjornar
    MONTHLY WEATHER REVIEW, 2020, 148 (01) : 403 - 414
  • [26] Postprocessing Ensemble Weather Forecasts for Introducing Multisite and Multivariable Correlations Using Rank Shuffle and Copula Theory
    Chen, Jie
    Li, Xiangquan
    Xu, Chong-Yu
    Zhang, Xunchang John
    Xiong, Lihua
    Guo, Qiang
    MONTHLY WEATHER REVIEW, 2022, 150 (03) : 551 - 565
  • [27] D-vine-copula-based postprocessing of wind speed ensemble forecasts
    Jobst, David
    Moeller, Annette
    Gross, Jurgen
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2023, 149 (755) : 2575 - 2597
  • [28] Statistical postprocessing of dual-resolution ensemble precipitation forecasts across Europe
    Gascon, Estibaliz
    Lavers, David
    Hamill, Thomas M.
    Richardson, David S.
    Bouallegue, Zied B.
    Leutbecher, Martin
    Pappenberger, Florian
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2019, 145 (724) : 3218 - 3235
  • [29] Evaluation of parametric postprocessing of ensemble precipitation forecasts of the NCMRWF for the Vishwamitri River Basin
    Yadav, Rashmi
    Yadav, Sanjaykumar M.
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (02) : 349 - 368
  • [30] Analog-Based Postprocessing of Navigation-Related Hydrological Ensemble Forecasts
    Hemri, S.
    Klein, B.
    WATER RESOURCES RESEARCH, 2017, 53 (11) : 9059 - 9077