Fast kernel spectral clustering

被引:12
|
作者
Langone, Rocco [1 ]
Suykens, Johan A. K. [1 ]
机构
[1] Katholieke Univ Leuven, ESAT STADIUS, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
基金
欧洲研究理事会;
关键词
Spectral clustering; Kernel methods; Big data; NystrOm approximation; LARGE DATA SETS; NYSTROM METHOD;
D O I
10.1016/j.neucom.2016.12.085
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral clustering suffers from a scalability problem in both memory usage and computational time when the number of data instances N is large. To solve this issue, we present a fast spectral clustering algorithm able to effectively handle millions of datapoints at a desktop PC scale. The proposed technique relies on a kernel-based formulation of the spectral clustering problem, also known as kernel spectral clustering. In this framework, the Nystrom approximation of the feature map of size m, with m << N, is used to solve the primal optimization problem. This leads to a reduction of time complexity from O(N-3) to O(mN) and space complexity from O(N-2) to O(mN). The effectiveness of the proposed algorithm in terms of computational efficiency and clustering quality is illustrated on several datasets. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:27 / 33
页数:7
相关论文
共 50 条
  • [31] Kernel spectral clustering for community detection in complex networks
    Langone, Rocco
    Alzate, Carlos
    Suykens, Johan A. K.
    [J]. 2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [32] Kernel spectral clustering for predicting maintenance of industrial machines
    Langone, Rocco
    Alzate, Carlos
    De Ketelaere, Bart
    Suykens, Johan A. K.
    [J]. 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2013, : 39 - 45
  • [33] Community detection using Kernel Spectral Clustering with memory
    Langone, Rocco
    Suykens, Johan A. K.
    [J]. IC-MSQUARE 2012: INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES, 2013, 410
  • [34] Multi-kernel graph fusion for spectral clustering
    Zhou, Bo
    Liu, Wenliang
    Zhang, Wenzhen
    Lu, Zhengyu
    Tan, Qianlin
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [35] Out-of-Sample Eigenvectors in Kernel Spectral Clustering
    Alzate, Carlos
    Suykens, Johan A. K.
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2349 - 2356
  • [36] Fast kernel matrix computation for big data clustering
    20153401191949
    [J]. (1) Aristotle University of Thessaloniki, Thessaloniki, Greece, (Elsevier B.V., Netherlands):
  • [37] Fast Kernel Matrix Computation for Big Data Clustering
    Tsapanos, Nikolaos
    Tefas, Anastasios
    Nikolaidis, Nikolaos
    Iosifidis, Alexandros
    Pitas, Ioannis
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2445 - 2452
  • [38] Fast Spectral Clustering Using Autoencoders and Landmarks
    Banijamali, Ershad
    Ghodsi, Ali
    [J]. IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 380 - 388
  • [39] Fast Spectral Clustering via the Nystrom Method
    Choromanska, Anna
    Jebara, Tony
    Kim, Hyungtae
    Mohan, Mahesh
    Monteleoni, Claire
    [J]. ALGORITHMIC LEARNING THEORY (ALT 2013), 2013, 8139 : 367 - 381
  • [40] REVISITING FAST SPECTRAL CLUSTERING WITH ANCHOR GRAPH
    Wang, Cheng-Long
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3902 - 3906