Algorithmic correspondence for intuitionistic modal mu-calculus

被引:27
|
作者
Conradie, Willem [1 ]
Fomatati, Yves [2 ]
Palmigiano, Alessandra [3 ]
Sourabh, Sumit [4 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, Auckland Pk, South Africa
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[3] Delft Univ Technol, Fac Technol Policy & Management, NL-2600 AA Delft, Netherlands
[4] Univ Amsterdam, Inst Log Language & Computat, NL-1012 WX Amsterdam, Netherlands
基金
新加坡国家研究基金会;
关键词
Sahlqvist correspondence; Algorithmic correspondence; Modal mu-calculus; Intuitionistic logic;
D O I
10.1016/j.tcs.2014.10.027
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the present paper, the algorithmic correspondence theory developed in Conradie and Palmigiano [9] is extended to mu-calculi with a non-classical base. We focus in particular on the language of bi-intuitionistic modal mu-calculus. We enhance the algorithm ALBA introduced in Conradie and Palmigiano [9] so as to guarantee its success on the class of recursive mu-inequalities, which we introduce in this paper. Key to the soundness of this enhancement are the order-theoretic properties of the algebraic interpretation of the fixed point operators. We show that, when restricted to the Boolean setting, the recursive mu-inequalities coincide with the "Sahlqvist mu-formulas" defined in van Benthem, Bezhanishvili and Hodkinson [22]. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 62
页数:33
相关论文
共 50 条
  • [21] Games for the mu-calculus
    Niwinski, D
    Walukiewicz, I
    [J]. THEORETICAL COMPUTER SCIENCE, 1996, 163 (1-2) : 99 - 116
  • [22] Relating Paths in Transition Systems: The Fall of the Modal Mu-Calculus
    Dima, Catalin
    Maubert, Bastien
    Pinchinat, Sophie
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT I, 2015, 9234 : 179 - 191
  • [23] Relating Paths in Transition Systems: The Fall of the Modal Mu-Calculus
    Dima, Catalin
    Maubert, Bastien
    Pinchinat, Sophie
    [J]. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2018, 19 (03)
  • [24] Spatial logic of tangled closure operators and modal mu-calculus
    Goldblatt, Robert
    Hodkinson, Ian
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (05) : 1032 - 1090
  • [25] Bounded game-theoretic semantics for modal mu-calculus
    Hella, Lauri
    Kuusisto, Antti
    Ronnholm, Raine
    [J]. INFORMATION AND COMPUTATION, 2022, 289
  • [26] EQUATIONAL MU-CALCULUS
    NIWINSKI, D
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1985, 208 : 167 - 176
  • [27] Domain mu-calculus
    Zhang, GQ
    [J]. RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2003, 37 (04): : 337 - 364
  • [28] Lukasiewicz mu-calculus
    Mio, Matteo
    Simpson, Alex
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2013, (126): : 87 - 104
  • [29] The Horn mu-calculus
    Charatonik, W
    McAllester, D
    Niwinski, D
    Podelski, A
    Walukiewicz, I
    [J]. THIRTEENTH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 1998, : 58 - 69
  • [30] Uniform Interpolation from Cyclic Proofs: The Case of Modal Mu-Calculus
    Afshari, Bahareh
    Leigh, Graham E.
    Turata, Guillermo Menendez
    [J]. AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2021, 2021, 12842 : 335 - 353