The Horn mu-calculus

被引:10
|
作者
Charatonik, W [1 ]
McAllester, D [1 ]
Niwinski, D [1 ]
Podelski, A [1 ]
Walukiewicz, I [1 ]
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
关键词
D O I
10.1109/LICS.1998.705643
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Horn mu-calculus is a logic programming language allowing arbitrary nesting of least and greatest fixed points. The Horn mu-programs can naturally expresses safety, and liveness properties for reactive systems. We extend the set-based analysis of classical logic programs by mapping arbitrary, mu-programs into "uniform" mu-programs. Our two main results are that uniform mu-programs express regular sets of trees and that emptiness for uniform mu-programs is EXPTIME-complete. Hence we have a nontrivial decidable relaxation for the Horn mu-calculus. In a different reading, the results express a kind of robustness of the notion of regularity: alternating Rabin tree automata preserve the same expressiveness and algorithmic complexity if we extend them with pushdown transition rules (in the same way Buchi extended word automata to canonical systems).
引用
下载
收藏
页码:58 / 69
页数:12
相关论文
共 50 条
  • [1] Games for the mu-calculus
    Niwinski, D
    Walukiewicz, I
    THEORETICAL COMPUTER SCIENCE, 1996, 163 (1-2) : 99 - 116
  • [2] EQUATIONAL MU-CALCULUS
    NIWINSKI, D
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 208 : 167 - 176
  • [3] Domain mu-calculus
    Zhang, GQ
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2003, 37 (04): : 337 - 364
  • [4] Lukasiewicz mu-calculus
    Mio, Matteo
    Simpson, Alex
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2013, (126): : 87 - 104
  • [5] Continuous Fragment of the mu-Calculus
    Fontaine, Gaelle
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2008, 5213 : 139 - 153
  • [6] Transfinite extension of the Mu-calculus
    Bradfield, J
    Duparc, J
    Quickert, S
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2005, 3634 : 384 - 396
  • [7] RESULTS ON THE PROPOSITIONAL MU-CALCULUS
    KOZEN, D
    LECTURE NOTES IN COMPUTER SCIENCE, 1982, 140 : 348 - 359
  • [8] RESULTS ON THE PROPOSITIONAL MU-CALCULUS
    KOZEN, D
    THEORETICAL COMPUTER SCIENCE, 1983, 27 (03) : 333 - 354
  • [9] Mu-calculus path checking
    Markey, N
    Schnoebelen, P
    INFORMATION PROCESSING LETTERS, 2006, 97 (06) : 225 - 230
  • [10] THE PROPOSITIONAL MU-CALCULUS IS ELEMENTARY
    STREETT, RS
    EMERSON, EA
    LECTURE NOTES IN COMPUTER SCIENCE, 1984, 172 : 465 - 472