NULL MEAN CURVATURE FLOW AND OUTERMOST MOTS

被引:2
|
作者
Bourni, Theodora [1 ]
Moore, Kristen [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37916 USA
关键词
EVOLUTION; SURFACES;
D O I
10.4310/jdg/1549422101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the evolution of hypersurfaces in spacetime initial data sets by their null mean curvature. A theory of weak solutions is developed using the level-set approach. Starting from an arbitrary mean convex, outer untapped hypersurface partial derivative Omega, we show that there exists a weak solution to the null mean curvature flow, given as a limit of approximate solutions that are defined using the epsilon-regularization method. We show that the approximate solutions blow up on the outermost MOTS and the weak solution converges (as boundaries of finite perimeter sets) to a generalized MOTS.
引用
收藏
页码:191 / 239
页数:49
相关论文
共 50 条
  • [1] Mean Curvature Flow in Null Hypersurfaces and the Detection of MOTS
    Henri Roesch
    Julian Scheuer
    [J]. Communications in Mathematical Physics, 2022, 390 : 1149 - 1173
  • [2] Mean Curvature Flow in Null Hypersurfaces and the Detection of MOTS
    Roesch, Henri
    Scheuer, Julian
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 390 (03) : 1149 - 1173
  • [3] Mean curvature flow of spacelike hypersurfaces near null initial data
    Ecker, K
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2003, 11 (02) : 181 - 205
  • [4] Rigidity of outermost MOTS: the initial data version
    Galloway, Gregory J.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2018, 50 (03)
  • [5] Rigidity of outermost MOTS: the initial data version
    Gregory J. Galloway
    [J]. General Relativity and Gravitation, 2018, 50
  • [6] Hypersurfaces with null higher order mean curvature
    Hilário Alencar
    Márcio Batista
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 481 - 493
  • [7] ON THE EVOLUTION OF HYPERSURFACES BY THEIR INVERSE NULL MEAN CURVATURE
    Moore, Kristen
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2014, 98 (03) : 425 - 466
  • [8] Hypersurfaces with null higher order mean curvature
    Alencar, Hilario
    Batista, Marcio
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (04): : 481 - 493
  • [9] MEAN CURVATURE FLOW
    Colding, Tobias Holck
    Minicozzi, William P., II
    Pedersen, Erik Kjaer
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 52 (02): : 297 - 333
  • [10] The mean curvature at the first singular time of the mean curvature flow
    Le, Nam Q.
    Sesum, Natasa
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (06): : 1441 - 1459