NULL MEAN CURVATURE FLOW AND OUTERMOST MOTS

被引:2
|
作者
Bourni, Theodora [1 ]
Moore, Kristen [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37916 USA
关键词
EVOLUTION; SURFACES;
D O I
10.4310/jdg/1549422101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the evolution of hypersurfaces in spacetime initial data sets by their null mean curvature. A theory of weak solutions is developed using the level-set approach. Starting from an arbitrary mean convex, outer untapped hypersurface partial derivative Omega, we show that there exists a weak solution to the null mean curvature flow, given as a limit of approximate solutions that are defined using the epsilon-regularization method. We show that the approximate solutions blow up on the outermost MOTS and the weak solution converges (as boundaries of finite perimeter sets) to a generalized MOTS.
引用
收藏
页码:191 / 239
页数:49
相关论文
共 50 条
  • [31] Singularities of mean curvature flow
    Yuanlong Xin
    [J]. Science China Mathematics, 2021, 64 : 1349 - 1356
  • [32] The mean curvature flow on solvmanifolds
    Arroyo, Romina M.
    Ovando, Gabriela P.
    Perales, Raquel
    Saez, Mariel
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [33] On the extension of the mean curvature flow
    Le, Nam Q.
    Sesum, Natasa
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (3-4) : 583 - 604
  • [34] Nucleation and mean curvature flow
    Visintin, A
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (1-2) : 17 - 53
  • [35] Hermitian mean curvature flow
    Yang, Jieming
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2024,
  • [36] Spacelike Mean Curvature Flow
    Ben Lambert
    Jason D. Lotay
    [J]. The Journal of Geometric Analysis, 2021, 31 : 1291 - 1359
  • [37] Mean Curvature Flow of Mean Convex Hypersurfaces
    Haslhofer, Robert
    Kleiner, Bruce
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (03) : 511 - 546
  • [38] Mean Curvature Flow in a Ricci Flow Background
    Lott, John
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 313 (02) : 517 - 533
  • [39] Mean Curvature Flow in a Ricci Flow Background
    John Lott
    [J]. Communications in Mathematical Physics, 2012, 313 : 517 - 533
  • [40] Bifurcation of metrics with null scalar curvature and constant mean curvature on the boundary of compact manifolds
    Elkin D. Cárdenas
    Willy Sierra
    [J]. manuscripta mathematica, 2022, 169 : 123 - 139