A machine learning enhanced approximate message passing massive MIMO accelerator

被引:1
|
作者
Brennsteiner, Stefan [1 ]
Arslan, Tughrul [1 ]
Thompson, John S. [2 ]
McCormick, Andrew [3 ]
机构
[1] Univ Edinburgh, Sch Engn, Inst Integrated Micro & Nano Syst, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Sch Engn, Inst Digital Commun, Edinburgh, Midlothian, Scotland
[3] Alpha Data Parallel Syst Ltd, Edinburgh, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/AICAS54282.2022.9869942
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning in the physical layer of communication systems currently receives much attention due to its potential to improve performance over difficult or unknown channels. Model-driven machine learning combines well-established algorithms with machine learning enhancements to realize these performance gains while keeping computational complexity within practical limits. In this work, we present the first model-driven machine-learning accelerator based on Orthogonal Approximate Message Passing (OAMP) for massive MIMO. The accelerator is configurable to support various machine learning enhancements such as those used in the OAMPNet and MMNet algorithms. The accelerator architecture is implemented as a deep pipeline to maximize throughput and we explore a range of antenna, user, and modulation configurations. Our results show the feasibility of deploying machine learning enhanced algorithms in future physical layer processors.
引用
收藏
页码:443 / 446
页数:4
相关论文
共 50 条
  • [41] Improving Massive MIMO Message Passing Detectors With Deep Neural Network
    Tan, Xiaosi
    Xu, Weihong
    Sun, Kai
    Xu, Yunhao
    Be'ery, Yair
    You, Xiaohu
    Zhang, Chuan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (02) : 1267 - 1280
  • [42] An Area-Efficient Message Passing Detector for Massive MIMO Systems
    Song, Suwen
    Wang, Zhongfeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (04) : 1751 - 1764
  • [43] Vector Approximate Message Passing
    Rangan, Sundeep
    Schniter, Philip
    Fletcher, Alyson K.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (10) : 6664 - 6684
  • [44] A Low-Complexity Large-MIMO Approximate Message Passing Detector
    Ge, Yingmeng
    Wang, Haibo
    Zhang, Zaichen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 7384 - 7388
  • [45] Efficient Symbol Detection for Holographic MIMO Communications With Unitary Approximate Message Passing
    Guo, Yabo
    Yuan, Zhengdao
    Sun, Peng
    Song, Yi
    Guo, Qinghua
    Wang, Zhongyong
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2025, 6 : 1363 - 1371
  • [46] Memory Approximate Message Passing
    Liu, Lei
    Huang, Shunqi
    Kurkoski, Brian M.
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 1379 - 1384
  • [47] Vector Approximate Message Passing
    Rangan, Sundeep
    Schniter, Philip
    Fletcher, Alyson K.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1588 - 1592
  • [48] Hybrid Approximate Message Passing
    Rangan, Sundeep
    Fletcher, Alyson K.
    Goyal, Vivek K.
    Byrne, Evan
    Schniter, Philip
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (17) : 4577 - 4592
  • [49] On Convergence of Approximate Message Passing
    Caltagirone, Francesco
    Zdeborova, Lenka
    Krzakala, Florent
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1812 - 1816
  • [50] Massive MIMO as an Extreme Learning Machine
    Gao, Dawei
    Guo, Qinghua
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) : 1046 - 1050