Quasiparticle Properties under Interactions in Weyl and Nodal Line Semimetals

被引:3
|
作者
Kang, Jing [1 ]
Zou, Jianfei [1 ]
Li, Kai [2 ]
Yu, Shun-Li [3 ,4 ,5 ]
Shao, Lu-Bing [3 ,4 ,5 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450001, Henan, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[4] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
[5] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41598-019-39258-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quasiparticle spectra of interacting Weyl and nodal-line semimetals on a cubic lattice are studied using the cluster perturbation theory. By tracking the spectral functions under interaction, we find that the Weyl points will move to and meet at a specific point in one Weyl semimetal model, while in the other Weyl semimetal model they are immobile. In the nodal-line semimetals, we find that the nodal line shrinks to a point and then disappears under interaction in one-nodal-line system. When we add another nodal line to this system, we find that the two nodal lines both shrink to specific points, but the disappearing processes of the two nodal lines are not synchronized. We argue that the nontrivial evolution of Weyl points and nodal lines under interaction is due to the presence of symmetry breaking order, e.g., a ferromagnetic moment, in the framework of mean field theory, whereas the stability of Weyl points under interaction is protected by symmetry. Among all these models, the spectral gap is finally opened when the interaction is strong enough.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Electronic correlations in nodal-line semimetals
    Shao, Yinming
    Rudenko, A. N.
    Hu, Jin
    Sun, Zhiyuan
    Zhu, Yanglin
    Moon, Seongphill
    Millis, A. J.
    Yuan, Shengjun
    Lichtenstein, A., I
    Smirnov, Dmitry
    Mao, Z. Q.
    Katsnelson, M., I
    Basov, D. N.
    NATURE PHYSICS, 2020, 16 (06) : 636 - +
  • [42] Thermodynamics and transport of holographic nodal line semimetals
    Ronnie Rodgers
    Enea Mauri
    Umut Gürsoy
    Henk T.C. Stoof
    Journal of High Energy Physics, 2021
  • [43] Tuning nodal line semimetals in trilayered systems
    Forte, Filomena
    Guerra, Delia
    Noce, Canio
    Brzezicki, Wojciech
    Cuoco, Mario
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (03): : 643 - 657
  • [44] RKKY interaction of in nodal-line semimetals
    Wang, Zhong-Yi
    Liu, Da-Yong
    Zou, Liang-Jian
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 553
  • [45] Research progress on topological nodal line semimetals
    Zhang ZeYing
    Fu BoTao
    Yu Zhi-Ming
    Yao YuGui
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2020, 50 (09)
  • [46] Electron transport in nodal-line semimetals
    Syzranov, S. V.
    Skinner, B.
    PHYSICAL REVIEW B, 2017, 96 (16)
  • [47] Thermodynamics and transport of holographic nodal line semimetals
    Rodgers, Ronnie
    Mauri, Enea
    Gursoy, Umut
    Stoof, Henk T. C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (11)
  • [48] Spinless hourglass nodal-line semimetals
    Takahashi, Ryo
    Hirayama, Motoaki
    Murakami, Shuichi
    PHYSICAL REVIEW B, 2017, 96 (15)
  • [49] Electrodynamics on Fermi Cyclides in Nodal Line Semimetals
    Ahn, Seongjin
    Mele, E. J.
    Min, Hongki
    PHYSICAL REVIEW LETTERS, 2017, 119 (14)
  • [50] Topological Semimetals in the SnTe Material Class: Nodal Lines and Weyl Points
    Lau, Alexander
    Ortix, Carmine
    PHYSICAL REVIEW LETTERS, 2019, 122 (18)