Quasiparticle Properties under Interactions in Weyl and Nodal Line Semimetals

被引:3
|
作者
Kang, Jing [1 ]
Zou, Jianfei [1 ]
Li, Kai [2 ]
Yu, Shun-Li [3 ,4 ,5 ]
Shao, Lu-Bing [3 ,4 ,5 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450001, Henan, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[4] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
[5] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41598-019-39258-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quasiparticle spectra of interacting Weyl and nodal-line semimetals on a cubic lattice are studied using the cluster perturbation theory. By tracking the spectral functions under interaction, we find that the Weyl points will move to and meet at a specific point in one Weyl semimetal model, while in the other Weyl semimetal model they are immobile. In the nodal-line semimetals, we find that the nodal line shrinks to a point and then disappears under interaction in one-nodal-line system. When we add another nodal line to this system, we find that the two nodal lines both shrink to specific points, but the disappearing processes of the two nodal lines are not synchronized. We argue that the nontrivial evolution of Weyl points and nodal lines under interaction is due to the presence of symmetry breaking order, e.g., a ferromagnetic moment, in the framework of mean field theory, whereas the stability of Weyl points under interaction is protected by symmetry. Among all these models, the spectral gap is finally opened when the interaction is strong enough.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Spin-triplet superconductivity in Weyl nodal-line semimetals
    Shang, Tian
    Ghosh, Sudeep K.
    Smidman, Michael
    Gawryluk, Dariusz Jakub
    Baines, Christopher
    Wang, An
    Xie, Wu
    Chen, Ye
    Ajeesh, Mukkattu O.
    Nicklas, Michael
    Pomjakushina, Ekaterina
    Medarde, Marisa
    Shi, Ming
    Annett, James F.
    Yuan, Huiqiu
    Quintanilla, Jorge
    Shiroka, Toni
    NPJ QUANTUM MATERIALS, 2022, 7 (01)
  • [12] Anisotropic RKKY interactions in nodal-line semimetals
    Duan, Hou-Jian
    Zheng, Shi-Han
    Yang, Yan-Yan
    Zhu, Chang-Yong
    Deng, Ming-Xun
    Yang, Mou
    Wang, Rui-Qiang
    PHYSICAL REVIEW B, 2020, 102 (16)
  • [13] Floquet multi-Weyl points in crossing-nodal-line semimetals
    Yan, Zhongbo
    Wang, Zhong
    PHYSICAL REVIEW B, 2017, 96 (04)
  • [14] Topological protection from exceptional points in Weyl and nodal-line semimetals
    Gonzalez, J.
    Molina, R. A.
    PHYSICAL REVIEW B, 2017, 96 (04)
  • [15] Universal phase transition and band structures for spinless nodal-line and Weyl semimetals
    Okugawa, Ryo
    Murakami, Shuichi
    PHYSICAL REVIEW B, 2017, 96 (11)
  • [16] Topological nodal line semimetals
    方辰
    翁红明
    戴希
    方忠
    Chinese Physics B, 2016, (11) : 13 - 22
  • [17] Topological nodal line semimetals
    Fang, Chen
    Weng, Hongming
    Dai, Xi
    Fang, Zhong
    CHINESE PHYSICS B, 2016, 25 (11)
  • [18] Surface Green's functions and quasiparticle interference in Weyl semimetals
    Pinon, Sarah
    Kaladzhyan, Vardan
    Bena, Cristina
    PHYSICAL REVIEW B, 2020, 102 (16)
  • [19] Quantum Transport of Disordered Weyl Semimetals at the Nodal Point
    Sbierski, Bjoern
    Pohl, Gregor
    Bergholtz, Emil J.
    Brouwer, Piet W.
    PHYSICAL REVIEW LETTERS, 2014, 113 (02)
  • [20] Topological d-wave superconductivity and nodal line-arc intersections in Weyl semimetals
    Hamilton, Gregory A.
    Park, Moon Jip
    Gilbert, Matthew J.
    PHYSICAL REVIEW B, 2019, 100 (13)