Extremal problems in de Branges spaces: the case of truncated and odd functions

被引:4
|
作者
Carneiro, Emanuel [1 ]
Goncalves, Felipe [1 ]
机构
[1] IMPA Inst Nacl Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
Extremal functions; De Branges spaces; Exponential type; Laplace transform; Reproducing kernel; Trigonometric polynomials; Majorants; ENTIRE APPROXIMATIONS; ZEROS;
D O I
10.1007/s00209-015-1411-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we find extremal one-sided approximations of exponential type for a class of truncated and odd functions with a certain exponential subordination. These approximations optimize the -error, where is an arbitrary Hermite-Biehler entire function of bounded type in the upper half-plane. This extends the work of Holt and Vaaler (Duke Math J 83:203-247, 1996) for the signum function. We also provide periodic analogues of these results, finding optimal one-sided approximations by trigonometric polynomials of a given degree to a class of periodic functions with exponential subordination. These extremal trigonometric polynomials optimize the -error, where is an arbitrary nontrivial measure on . The periodic results extend the work of Li and Vaaler (Indiana Univ Math J 48(1):183-236, 1999), who considered this problem for the sawtooth function with respect to Jacobi measures. Our techniques are based on the theory of reproducing kernel Hilbert spaces (of entire functions and of polynomials) and on the construction of suitable interpolations with nodes at the zeros of Laguerre-Plya functions.
引用
收藏
页码:17 / 45
页数:29
相关论文
共 50 条
  • [1] Extremal problems in de Branges spaces: the case of truncated and odd functions
    Emanuel Carneiro
    Felipe Gonçalves
    Mathematische Zeitschrift, 2015, 280 : 17 - 45
  • [2] Extremal functions in de Branges and Euclidean spaces
    Carneiro, Emanuel
    Littmann, Friedrich
    ADVANCES IN MATHEMATICS, 2014, 260 : 281 - 349
  • [3] EXTREMAL FUNCTIONS IN DE BRANGES AND EUCLIDEAN SPACES, II
    Carneiro, Emanuel
    Littmann, Friedrich
    AMERICAN JOURNAL OF MATHEMATICS, 2017, 139 (02) : 525 - 566
  • [4] de Branges Rovnyak spaces and Schur functions: the hyperholomorphic case.
    Alpay, D
    Shapiro, M
    Volok, D
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (06) : 437 - 442
  • [5] Polynomials in the de Branges spaces of entire functions
    Baranov, Anton D.
    ARKIV FOR MATEMATIK, 2006, 44 (01): : 16 - 38
  • [6] Outer Functions and Divergence in de Branges–Rovnyak Spaces
    Javad Mashreghi
    Thomas Ransford
    Complex Analysis and Operator Theory, 2018, 12 : 987 - 995
  • [7] Boundary Behavior of Functions in the de Branges–Rovnyak Spaces
    Emmanuel Fricain
    Javad Mashreghi
    Complex Analysis and Operator Theory, 2008, 2 : 87 - 97
  • [8] The Mellin Transform, De Branges Spaces, and Bessel Functions
    Kapustin V.V.
    Journal of Mathematical Sciences, 2024, 282 (4) : 511 - 515
  • [9] Boundary Behavior of Functions in the de Branges-Rovnyak Spaces
    Fricain, Emmanuel
    Mashreghi, Javad
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (01) : 87 - 97
  • [10] De Branges spaces of entire functions symmetric about the origin
    Kaltenback, Michael
    Winkler, Henrik
    Woracek, Harald
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (04) : 483 - 509