EXTREMAL FUNCTIONS IN DE BRANGES AND EUCLIDEAN SPACES, II

被引:4
|
作者
Carneiro, Emanuel [1 ]
Littmann, Friedrich [2 ]
机构
[1] IMPA Inst Nacl Matemat Pura Aplicada, Estrada Dona Castorina 110, Rio De Janeiro, Brazil
[2] North Dakota State Univ, Dept Math, Fargo, ND 58105 USA
关键词
BAND-LIMITED APPROXIMATIONS; ZETA; ZEROS;
D O I
10.1353/ajm.2017.0014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents the Gaussian subordination framework to generate optimal one-sided approximations to multidimensional real-valued functions by functions of prescribed exponential type. Such extremal problems date back to the works of Betiding and Selberg and provide a variety of applicalions in analysis and analytic number theory. Here we majorize and minorize (on R-N) the Gaussian x -> e(-pi lambda vertical bar x vertical bar 2), where lambda > 0 is a free parameter, by functions with distributional Fourier transforms supported on Euclidean balls, optimizing weighted L-1-errors. By integrating the parameter A against suitable measures, we solve-the analogous problem for a wide class of radial functions. Applications to inequalities and periodic analogues are discussed. The constructions presented here rely on the theory of de Branges spaces of entire functions and on new interpolation tools derived from the theory of Laplace transforms of Laguerre-Polya functions.
引用
收藏
页码:525 / 566
页数:42
相关论文
共 50 条
  • [1] Extremal functions in de Branges and Euclidean spaces
    Carneiro, Emanuel
    Littmann, Friedrich
    ADVANCES IN MATHEMATICS, 2014, 260 : 281 - 349
  • [2] Extremal problems in de Branges spaces: the case of truncated and odd functions
    Carneiro, Emanuel
    Goncalves, Felipe
    MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) : 17 - 45
  • [3] Extremal problems in de Branges spaces: the case of truncated and odd functions
    Emanuel Carneiro
    Felipe Gonçalves
    Mathematische Zeitschrift, 2015, 280 : 17 - 45
  • [4] Polynomials in the de Branges spaces of entire functions
    Baranov, Anton D.
    ARKIV FOR MATEMATIK, 2006, 44 (01): : 16 - 38
  • [5] Outer Functions and Divergence in de Branges–Rovnyak Spaces
    Javad Mashreghi
    Thomas Ransford
    Complex Analysis and Operator Theory, 2018, 12 : 987 - 995
  • [6] Boundary Behavior of Functions in the de Branges–Rovnyak Spaces
    Emmanuel Fricain
    Javad Mashreghi
    Complex Analysis and Operator Theory, 2008, 2 : 87 - 97
  • [7] The Mellin Transform, De Branges Spaces, and Bessel Functions
    Kapustin V.V.
    Journal of Mathematical Sciences, 2024, 282 (4) : 511 - 515
  • [8] Interpolation formulas with derivatives in de Branges spaces II
    Goncalves, Felipe
    Littmann, Friedrich
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) : 1091 - 1114
  • [9] Boundary Behavior of Functions in the de Branges-Rovnyak Spaces
    Fricain, Emmanuel
    Mashreghi, Javad
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (01) : 87 - 97
  • [10] De Branges spaces of entire functions symmetric about the origin
    Kaltenback, Michael
    Winkler, Henrik
    Woracek, Harald
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (04) : 483 - 509