Extremal problems in de Branges spaces: the case of truncated and odd functions

被引:4
|
作者
Carneiro, Emanuel [1 ]
Goncalves, Felipe [1 ]
机构
[1] IMPA Inst Nacl Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
Extremal functions; De Branges spaces; Exponential type; Laplace transform; Reproducing kernel; Trigonometric polynomials; Majorants; ENTIRE APPROXIMATIONS; ZEROS;
D O I
10.1007/s00209-015-1411-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we find extremal one-sided approximations of exponential type for a class of truncated and odd functions with a certain exponential subordination. These approximations optimize the -error, where is an arbitrary Hermite-Biehler entire function of bounded type in the upper half-plane. This extends the work of Holt and Vaaler (Duke Math J 83:203-247, 1996) for the signum function. We also provide periodic analogues of these results, finding optimal one-sided approximations by trigonometric polynomials of a given degree to a class of periodic functions with exponential subordination. These extremal trigonometric polynomials optimize the -error, where is an arbitrary nontrivial measure on . The periodic results extend the work of Li and Vaaler (Indiana Univ Math J 48(1):183-236, 1999), who considered this problem for the sawtooth function with respect to Jacobi measures. Our techniques are based on the theory of reproducing kernel Hilbert spaces (of entire functions and of polynomials) and on the construction of suitable interpolations with nodes at the zeros of Laguerre-Plya functions.
引用
收藏
页码:17 / 45
页数:29
相关论文
共 50 条
  • [31] Perturbation of chains of de Branges spaces
    Harald Woracek
    Journal d'Analyse Mathématique, 2018, 135 : 271 - 312
  • [32] De Branges-Rovnyak spaces and Dirichlet spaces
    Chevrot, Nicolas
    Guillot, Dominique
    Ransford, Thomas
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (09) : 2366 - 2383
  • [33] Perturbation of chains of de Branges spaces
    Woracek, Harald
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 135 (01): : 271 - 312
  • [34] De Branges-Rovnyak spaces generated by row Schur functions with mate
    Chen, Hongxin
    Gu, Caixing
    Luo, Shuaibing
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [35] de branges spaces of entire functions closed under forming difference quotients
    Woracek, H
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 37 (02) : 238 - 249
  • [36] SCHUR MULTIPLIERS AND DE BRANGES-ROVNYAK SPACES: THE MULTISCALE CASE
    Alpay, Daniel
    Dijksma, Aad
    Volok, Dan
    JOURNAL OF OPERATOR THEORY, 2009, 61 (01) : 87 - 118
  • [37] De Branges functions of Schroedinger equations
    A. Baranov
    Y. Belov
    A. Poltoratski
    Collectanea Mathematica, 2017, 68 : 251 - 263
  • [38] De Branges functions of Schroedinger equations
    Baranov, A.
    Belov, Y.
    Poltoratski, A.
    COLLECTANEA MATHEMATICA, 2017, 68 (02) : 251 - 263
  • [39] Zeros of L-functions in low-lying intervals and de Branges spaces
    Ramos, Antonio Pedro
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (05)
  • [40] INTERPOLATION FORMULAS WITH DERIVATIVES IN DE BRANGES SPACES
    Goncalves, Felipe
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (02) : 805 - 832