An Individualized, Data-Driven Digital Approach for Precision Behavior Change

被引:18
|
作者
Wongvibulsin, Shannon [1 ]
Martin, Seth S. [2 ]
Saria, Suchi [3 ,4 ,5 ]
Zeger, Scott L. [6 ]
Murphy, Susan A. [7 ,8 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Med, Ciccarone Ctr Prevent Cardiovasc Dis,Div Cardiol, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Dept Comp Sci & Appl Math & Stat, Baltimore, MD USA
[4] Johns Hopkins Univ, Dept Hlth Policy & Management, Armstrong Inst Patient Safety & Qual, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Biostat, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
[6] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
[7] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[8] Harvard Univ, Dept Comp Sci, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
precision medicine; digital therapeutics; behavior change; mobile health (mHealth); machine learning; MEDICINE; TRANSFORM; SCIENCE; MODELS;
D O I
10.1177/1559827619843489
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Chronic disease now affects approximately half of the US population, causes 7 in 10 deaths, and accounts for roughly 80% of US health care expenditure. Because the root causes of chronic diseases are largely behavioral, effective therapies require frequent, individualized interventions that extend beyond the hospital and clinic to reach patients in their day-to-day lives. However, a mismatch currently exists between what the health care system is equipped to provide and the interventions necessary to effectively address the chronic disease burden. To remedy this health crisis, we present an individualized, data-driven digital approach for chronic disease management and prevention through precision behavior change. The rapid growth of information, biological, and communication technologies makes this an opportune time to develop digital tools that deliver precision interventions for health behavior change to address the chronic disease crisis. Building on this rapid growth, we propose a framework that includes the precise targeting of risk-producing behaviors using real-time sensing technology, machine learning data analysis to identify the most effective intervention, and delivery of that intervention with health-reinforcing feedback to provide real-time, individualized support to empower sustainable health behavior change.
引用
收藏
页码:289 / 293
页数:5
相关论文
共 50 条
  • [41] Behavior-driven vs data-driven: A nonissue?
    DSouza, DF
    JOURNAL OF OBJECT-ORIENTED PROGRAMMING, 1996, 8 (09): : 65 - &
  • [42] Data-driven precision determination of the material budget in ALICE
    Acharya, S.
    Adamova, D.
    Adler, A.
    Rinella, G. Aglieri
    Agnello, M.
    Agrawal, N.
    Ahammed, Z.
    Ahmad, S.
    Ahn, S. U.
    Ahuja, I.
    Akindinov, A.
    Al-Turany, M.
    Aleksandrov, D.
    Alessandro, B.
    Alfanda, H. M.
    Molina, R. Alfaro
    Ali, B.
    Alici, A.
    Alizadehvandchali, N.
    Alkin, A.
    Alme, J.
    Alocco, G.
    Alt, T.
    Altsybeev, I.
    Anaam, M. N.
    Andrei, C.
    Andronic, A.
    Anguelov, V.
    Antinori, F.
    Antonioli, P.
    Apadula, N.
    Aphecetche, L.
    Appelshaeuser, H.
    Arata, C.
    Arcelli, S.
    Aresti, M.
    Arnaldi, R.
    Arneiro, J. G. M. C. A.
    Arsene, I. C.
    Arslandok, M.
    Augustinus, A.
    Averbeck, R.
    Azmi, M. D.
    Badala, A.
    Bae, J.
    Baek, Y. W.
    Bai, X.
    Bailhache, R.
    Bailung, Y.
    Balbino, A.
    JOURNAL OF INSTRUMENTATION, 2023, 18 (11)
  • [43] Data-Driven Precision and Selectiveness in Political Campaign Fundraising
    Walker, Doug
    Nowlin, Edward L.
    JOURNAL OF POLITICAL MARKETING, 2021, 20 (02) : 73 - 92
  • [44] Data ratcheting and data-driven organisational change in transport
    Heaphy, Liam
    BIG DATA & SOCIETY, 2019, 6 (02):
  • [45] The future of precision health is data-driven decision support
    Sperger, John
    Freeman, Nikki L. B.
    Jiang, Xiaotong
    Bang, David
    de Marchi, Daniel
    Kosorok, Michael R.
    STATISTICAL ANALYSIS AND DATA MINING, 2020, 13 (06) : 537 - 543
  • [46] Data-driven digital entertainment: a computational perspective
    Zhuang, Yue-ting
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2013, 14 (07): : 475 - 476
  • [47] Data-Driven Clock Gating for Digital Filters
    Bonanno, Alberto
    Bocca, Alberto
    Macii, Alberto
    Macii, Enrico
    Poncino, Massimo
    INTEGRATED CIRCUIT AND SYSTEM DESIGN: POWER AND TIMING MODELING, OPTIMIZATION AND SIMULATION, 2010, 5953 : 96 - 105
  • [48] A data-driven digital twin for water ultrafiltration
    Jan Kloppenborg Møller
    Goran Goranović
    Per Brath
    Henrik Madsen
    Communications Engineering, 1 (1):
  • [49] Data-driven digital entertainment: a computational perspective
    Yue-ting ZHUANG
    Journal of Zhejiang University-Science C(Computers & Electronics), 2013, 14 (07) : 475 - 476
  • [50] Towards a Taxonomy of Data-driven Digital Services
    Rizk, Aya
    Bergvall-Kareborn, Birgitta
    Elragal, Ahmed
    PROCEEDINGS OF THE 51ST ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2018, : 1076 - 1085