Data-Driven Precision and Selectiveness in Political Campaign Fundraising

被引:4
|
作者
Walker, Doug [1 ]
Nowlin, Edward L. [1 ]
机构
[1] Kansas State Univ, Coll Business Adm, BB 2051,1301 Lovers Lane, Manhattan, KS 66506 USA
关键词
Analytics; big data; data-driven marketing; direct marketing; fundraising; microtargeting; political campaigning; SELECTION;
D O I
10.1080/15377857.2018.1457590
中图分类号
D0 [政治学、政治理论];
学科分类号
0302 ; 030201 ;
摘要
The sophistication of political campaigns has dramatically increased over recent election cycles through the embracing of big data analytics. Collecting and storing information on actual and potential voters, volunteers, and donors has produced extensive databases that are then used to guide microtargeting efforts related to advertising, organizing, and fundraising efforts. But building, maintaining, and analyzing this data are costly in itself. This paper looks at two aspects of data-driven political fundraising: precision and selectiveness, with respect to the alignment of the ideology of potential donors and the ideology of the candidate. Specifically, the proposed model is used to determine the optimal precision in estimating a donor's location on the political ideology spectrum and the optimal targeting decision for fundraising solicitations given that estimate. Analysis of the model produces guidance for changes in solicitation cost and donation size. The results produced by the model are considered in light of the 2016 U.S. Presidential election. The analysis suggests that the Clinton campaign's larger donation size likely played a greater role than did the campaign's higher solicitation cost in terms of targeting. The model is also consistent with the Clinton campaign's higher expenditures on analytics, given their larger donation size and solicitation cost.
引用
收藏
页码:73 / 92
页数:20
相关论文
共 50 条
  • [1] Data-Driven Fundraising: Strategic Plan for Medical Education
    Jalali, Alireza
    Nyman, Jacline
    Loeffelholz, Ouida
    Courtney, Chantelle
    [J]. JMIR MEDICAL EDUCATION, 2024, 10
  • [2] Privacy and Canadian Political Parties: The Effects of the Data-Driven Campaign on Elector Engagement
    Bannerman, Sara
    Kalinina, Julia
    Dubois, Elizabeth
    Goodman, Nicole
    [J]. CANADIAN JOURNAL OF POLITICAL SCIENCE-REVUE CANADIENNE DE SCIENCE POLITIQUE, 2022, 55 (04): : 873 - 896
  • [3] Understanding Digital Campaign Competence: Conceptualizing Data-Driven Political Advertising Literacy
    Minihold, Sophie
    Lecheler, Sophie
    Gibson, Rachel
    de Vreese, Claes
    Kruikemeier, Sanne
    [J]. MASS COMMUNICATION AND SOCIETY, 2024,
  • [4] Data-Driven Precision Implementation Approach
    Cullen, Laura
    Hanrahan, Kirsten
    Tucker, Sharon J.
    Gallagher-Ford, Lynn
    [J]. AMERICAN JOURNAL OF NURSING, 2019, 119 (08) : 60 - 63
  • [5] Data-driven political campaigns in practice: understanding and regulating diverse data-driven campaigns
    Dommett, Katharine
    [J]. INTERNET POLICY REVIEW, 2019, 8 (04):
  • [6] A data-driven bibliometric review on precision irrigation
    Violino, Simona
    Figorilli, Simone
    Ferrigno, Marianna
    Manganiello, Veronica
    Pallottino, Federico
    Costa, Corrado
    Menesatti, Paolo
    [J]. SMART AGRICULTURAL TECHNOLOGY, 2023, 5
  • [7] Data-driven dairy aims to maximise precision
    不详
    [J]. VETERINARY RECORD, 2018, 183 (18) : 559 - 559
  • [8] Data-Driven Methods for Advancing Precision Oncology
    Nedungadi P.
    Iyer A.
    Gutjahr G.
    Bhaskar J.
    Pillai A.B.
    [J]. Current Pharmacology Reports, 2018, 4 (2) : 145 - 156
  • [9] Data-driven precision determination of the material budget in ALICE
    Acharya, S.
    Adamova, D.
    Adler, A.
    Rinella, G. Aglieri
    Agnello, M.
    Agrawal, N.
    Ahammed, Z.
    Ahmad, S.
    Ahn, S. U.
    Ahuja, I.
    Akindinov, A.
    Al-Turany, M.
    Aleksandrov, D.
    Alessandro, B.
    Alfanda, H. M.
    Molina, R. Alfaro
    Ali, B.
    Alici, A.
    Alizadehvandchali, N.
    Alkin, A.
    Alme, J.
    Alocco, G.
    Alt, T.
    Altsybeev, I.
    Anaam, M. N.
    Andrei, C.
    Andronic, A.
    Anguelov, V.
    Antinori, F.
    Antonioli, P.
    Apadula, N.
    Aphecetche, L.
    Appelshaeuser, H.
    Arata, C.
    Arcelli, S.
    Aresti, M.
    Arnaldi, R.
    Arneiro, J. G. M. C. A.
    Arsene, I. C.
    Arslandok, M.
    Augustinus, A.
    Averbeck, R.
    Azmi, M. D.
    Badala, A.
    Bae, J.
    Baek, Y. W.
    Bai, X.
    Bailhache, R.
    Bailung, Y.
    Balbino, A.
    [J]. JOURNAL OF INSTRUMENTATION, 2023, 18 (11)
  • [10] The future of precision health is data-driven decision support
    Sperger, John
    Freeman, Nikki L. B.
    Jiang, Xiaotong
    Bang, David
    de Marchi, Daniel
    Kosorok, Michael R.
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2020, 13 (06) : 537 - 543