On the Laplacian integral (k - 1)-cyclic graphs

被引:0
|
作者
Huang, Xueyi [1 ]
Huang, Qiongxiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
Laplacian spectrum; Laplacian integral graph; generalized theta-graph; EIGENVALUES; MATRICES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called Laplacian integral if its Laplacian spectrum consists of integers. Let theta(n(1), n(2) ..., n(k)) be a generalized theta-graph (see Figure 1). Denote by g(k-1) the set of (k - 1)-cyclic graphs each of them contains some generalized theta-graph theta(n(1), n(2), ..., n(k)) as its induced subgraph. In this paper, we give an edge subdividing theorem for Laplacian eigenvalues of a graph (Theorem 2.1), from which we identify all the Laplacian integral graphs in the class g(k-1) (Theorem 3.2).
引用
收藏
页码:247 / 256
页数:10
相关论文
共 50 条
  • [41] On distance signless Laplacian spectral radius of power graphs of cyclic and dihedral groups
    Ul Shaban, Rezwan
    Rather, Bilal A.
    Pirzada, S.
    Somasundaram, A.
    ANNALES MATHEMATICAE ET INFORMATICAE, 2022, 55 : 172 - 183
  • [42] The Signless Laplacian Spectral Radius of Tricyclic Graphs with k Pendant Vertices
    Jingming ZHANGJiming GUO School of Mathematical SciencesUniversity of Electronic Science and Technology of China Sichuan PRChinaCollege of Mathematics and Computational ScienceChina University of Petroleum Shandong PRChina
    数学研究及应用, 2012, 32 (03) : 281 - 287
  • [43] The signless Laplacian spectral radius of k-connected irregular graphs
    Shiu, Wai Chee
    Huang, Peng
    Sun, Pak Kiu
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (04): : 830 - 839
  • [44] The signless Laplacian spectral radius of k-connected irregular graphs
    Ning, Wenjie
    Lu, Mei
    Wang, Kun
    Jiang, Daqing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 553 : 117 - 128
  • [45] The Signless Laplacian Spectral Radius of Tricyclic Graphs with k Pendant Vertices
    Jingming ZHANG1
    2.College of Mathematics and Computational Science
    Journal of Mathematical Research with Applications, 2012, (03) : 281 - 287
  • [46] Improved KL (K-means-Laplacian) Clustering with Sparse Graphs
    Wei, Lai
    Xu, Feifei
    MULTIMEDIA AND SIGNAL PROCESSING, 2012, 346 : 506 - +
  • [47] On Brouwer's conjecture for the sum of k largest Laplacian eigenvalues of graphs
    Chen, Xiaodan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 : 402 - 410
  • [48] The Signless Laplacian Spectral Radius for Bicyclic Graphs with k Pendant Vertices
    Feng, Lihua
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (01): : 109 - 116
  • [49] (Laplacian) Borderenergetic Graphs and Bipartite Graphs
    Deng, Bo
    Li, Xueliang
    Zhao, Haixing
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (02) : 481 - 489
  • [50] Nodal domains of eigenvectors for 1-Laplacian on graphs
    Chang, K. C.
    Shao, Sihong
    Zhang, Dong
    ADVANCES IN MATHEMATICS, 2017, 308 : 529 - 574