On the Laplacian integral (k - 1)-cyclic graphs

被引:0
|
作者
Huang, Xueyi [1 ]
Huang, Qiongxiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
Laplacian spectrum; Laplacian integral graph; generalized theta-graph; EIGENVALUES; MATRICES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called Laplacian integral if its Laplacian spectrum consists of integers. Let theta(n(1), n(2) ..., n(k)) be a generalized theta-graph (see Figure 1). Denote by g(k-1) the set of (k - 1)-cyclic graphs each of them contains some generalized theta-graph theta(n(1), n(2), ..., n(k)) as its induced subgraph. In this paper, we give an edge subdividing theorem for Laplacian eigenvalues of a graph (Theorem 2.1), from which we identify all the Laplacian integral graphs in the class g(k-1) (Theorem 3.2).
引用
收藏
页码:247 / 256
页数:10
相关论文
共 50 条
  • [31] Laplacian spectral characterization of graphs Hn(Cp, Ps, K1,q)
    Lu, Pengli
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2012, 33 (12): : 1522 - 1528
  • [32] The (signless) Laplacian spectral radii of c-cyclic graphs with n vertices, girth g and k pendant vertices
    Liu, Muhuo
    Das, Kinkar Ch.
    Lai, Hong-Jian
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (05): : 869 - 881
  • [33] Ordering c-cyclic graphs with respect to signless Laplacian spectral
    Nasiri, R.
    Ellahi, H. R.
    Gholami, A.
    ARS COMBINATORIA, 2018, 140 : 293 - 300
  • [34] On normalized Laplacian eigenvalues of power graphs associated to finite cyclic groups
    Rather, Bilal A.
    Pirzada, S.
    Chishti, T. A.
    Alghamdi, Ahmad M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (02)
  • [35] Computing the sum of k largest Laplacian eigenvalues of tricyclic graphs
    Kumar, Pawan
    Merajuddin, S.
    Pirzada, Shariefuddin
    DISCRETE MATHEMATICS LETTERS, 2023, 11 : 14 - 18
  • [36] The Laplacian spectral radius of unicyclic graphs with k pendent vertices
    Zhang, Xiaoling
    Zhang, Heping
    ARS COMBINATORIA, 2009, 90 : 345 - 355
  • [37] Characterizing threshold graphs with k main signless Laplacian eigenvalues
    Vinagre, Cybele T. M.
    Trevisan, Vilmar
    Bolckau, Johann
    Chimelli, Rodrigo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 33 - 45
  • [38] The k-Domination Number and Bounds for the Laplacian Eigenvalues of Graphs
    Li, Rao
    UTILITAS MATHEMATICA, 2009, 79 : 189 - 192
  • [39] The signature of k-cyclic graphs of ∞-type
    Wang, Dengyin
    Tian, Fenglei
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (03): : 375 - 382
  • [40] The nullity of k-cyclic graphs of ∞-type
    Ma, Xiaobin
    Wong, Dein
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (11): : 2200 - 2211