Hidden conditional random fields

被引:316
|
作者
Quattoni, Ariadna [1 ]
Wang, Sybor [1 ]
Morency, Louis-Philippe [1 ]
Collins, Michael [1 ]
Darrell, Trevor [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
关键词
object recognition; model; supervised learning; classification;
D O I
10.1109/TPAMI.2007.1124
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a discriminative latent variable model for classification problems in structured domains where inputs can be represented by a graph of local observations. A hidden-state Conditional Random Field framework learns a set of latent variables conditioned on local features. Observations need not be independent and may overlap in space and time.
引用
收藏
页码:1848 / 1853
页数:6
相关论文
共 50 条
  • [31] Structure Learning in Hidden Conditional Random Fields for Grapheme-to-Phoneme Conversion
    Lehnen, Patrick
    Allauzen, Alexandre
    Lavergne, Thomas
    Yvon, Francois
    Hahn, Stefan
    Ney, Hermann
    [J]. 14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 2325 - 2329
  • [32] Face recognition using Hidden Conditional Random fields and Support Vector Machine
    Yang, Huachun
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND APPLICATIONS (CSA), 2013, : 341 - 344
  • [33] Human Activity Recognition Using Gaussian Mixture Hidden Conditional Random Fields
    Siddiqi, Muhammad Hameed
    Alruwaili, Madallah
    Ali, Amjad
    Alanazi, Saad
    Zeshan, Furkh
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2019, 2019
  • [34] Joint Optimization of Hidden Conditional Random Fields and Non Linear Feature Extraction
    Vinel, Antoine
    Trinh Minh Tri Do
    Artieres, Thierry
    [J]. 11TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR 2011), 2011, : 513 - 517
  • [35] Weakly supervised detection of video events using hidden conditional random fields
    Shirahama, Kimiaki
    Grzegorzek, Marcin
    Uehara, Kuniaki
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2015, 4 (01) : 17 - 32
  • [36] Improving LVCSR with Hidden Conditional Random Fields for Grapheme-to-Phoneme Conversion
    Hahn, Stefan
    Lehnen, Patrick
    Wiesler, Simon
    Schlueter, Ralf
    Ney, Hermann
    [J]. 14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 495 - 499
  • [37] Max-Margin Hidden Conditional Random Fields for Human Action Recognition
    Wang, Yang
    Mori, Greg
    [J]. CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 872 - 879
  • [38] Human Action Recognition Using Manifold Learning and Hidden Conditional Random Fields
    Liu, Fawang
    Jia, Yunde
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE FOR YOUNG COMPUTER SCIENTISTS, VOLS 1-5, 2008, : 693 - 698
  • [39] Maximum Conditional Likelihood Linear Regression and Maximum A Posteriori for Hidden Conditional Random Fields speaker adaptation
    Sung, Yun-Hsuan
    Boulis, Constantinos
    Jurafsky, Dan
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 4293 - +
  • [40] Coupled hidden conditional random fields for RGB-D human action recognition
    Liu, An-An
    Nie, Wei-Zhi
    Su, Yu-Ting
    Ma, Li
    Hao, Tong
    Yang, Zhao-Xuan
    [J]. SIGNAL PROCESSING, 2015, 112 : 74 - 82