Joint Optimization of Hidden Conditional Random Fields and Non Linear Feature Extraction

被引:2
|
作者
Vinel, Antoine [1 ]
Trinh Minh Tri Do [2 ]
Artieres, Thierry [1 ]
机构
[1] Univ Paris 06, LIP6, Paris, France
[2] IDIAP, Marigny, Switzerland
关键词
Deep Neural Networks; Conditional Random Fields; Handwriting recognition;
D O I
10.1109/ICDAR.2011.109
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe an hybrid model that combines deep neural networks (DNN) for nonlinear feature extraction and hidden conditional random fields (HCRF), i.e. conditional random fields with hidden states. The model is globally trained though joint optimization of HCRF and DNN parameters. To deal with this highly non convex optimization criterion, we propose a multi-step training which aims at providing a good initialization before the final joint optimization of all parameters. We investigate then the discriminative power of these models with respect to the architecture of the DNN, and compare our models to HMM and HCRF based algorithms on the IAM database.
引用
收藏
页码:513 / 517
页数:5
相关论文
共 50 条
  • [1] Hidden conditional random fields
    Quattoni, Ariadna
    Wang, Sybor
    Morency, Louis-Philippe
    Collins, Michael
    Darrell, Trevor
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (10) : 1848 - 1853
  • [2] Model and Feature Selection in Hidden Conditional Random Fields with Group Regularization
    Cilla, Rodrigo
    Patricio, Miguel A.
    Berlanga, Antonio
    Molina, Jose M.
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, 2013, 8073 : 140 - 149
  • [3] Background Extraction Based on Joint Gaussian Conditional Random Fields
    Wang, Hong-Cyuan
    Lai, Yu-Chi
    Cheng, Wen-Huang
    Cheng, Chin-Yun
    Hua, Kai-Lung
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (11) : 3127 - 3140
  • [4] Joint semi-supervised learning of Hidden Conditional Random Fields and Hidden Markov Models
    Soullard, Yann
    Saveski, Martin
    Artieres, Thierry
    [J]. PATTERN RECOGNITION LETTERS, 2014, 37 : 161 - 171
  • [5] Non-parametric Hidden Conditional Random Fields for Action Classification
    Raman, Natraj
    Maybank, S. J.
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3256 - 3263
  • [6] Variational Infinite Hidden Conditional Random Fields
    Bousmalis, Konstantinos
    Zafeiriou, Stefanos
    Morency, Louis-Philippe
    Pantic, Maja
    Ghahramani, Zoubin
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) : 1917 - 1929
  • [7] Hidden Conditional Random Fields for Phone Recognition
    Sung, Yun-Hsuan
    Jurafsky, Dan
    [J]. 2009 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION & UNDERSTANDING (ASRU 2009), 2009, : 107 - 112
  • [8] Hidden Conditional Random Fields for Face Recognition
    Yang, Huachun
    [J]. INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2012), 2013, 8768
  • [9] Hidden Conditional Random Fields for Face Recognition
    Yang, Huachun
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND APPLICATIONS (CSA), 2013, : 337 - 340
  • [10] Training algorithms for hidden conditional random fields
    Mahajan, Milind
    Gunawardana, Asela
    Acero, Alex
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 273 - 276