Joint Optimization of Hidden Conditional Random Fields and Non Linear Feature Extraction

被引:2
|
作者
Vinel, Antoine [1 ]
Trinh Minh Tri Do [2 ]
Artieres, Thierry [1 ]
机构
[1] Univ Paris 06, LIP6, Paris, France
[2] IDIAP, Marigny, Switzerland
关键词
Deep Neural Networks; Conditional Random Fields; Handwriting recognition;
D O I
10.1109/ICDAR.2011.109
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe an hybrid model that combines deep neural networks (DNN) for nonlinear feature extraction and hidden conditional random fields (HCRF), i.e. conditional random fields with hidden states. The model is globally trained though joint optimization of HCRF and DNN parameters. To deal with this highly non convex optimization criterion, we propose a multi-step training which aims at providing a good initialization before the final joint optimization of all parameters. We investigate then the discriminative power of these models with respect to the architecture of the DNN, and compare our models to HMM and HCRF based algorithms on the IAM database.
引用
收藏
页码:513 / 517
页数:5
相关论文
共 50 条
  • [41] Deep-Structured Hidden Conditional Random Fields for Phonetic Recognition
    Yu, Dong
    Deng, Li
    [J]. 11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4, 2010, : 2986 - 2989
  • [42] Adaptive foreground and shadow segmentation using hidden conditional random fields
    Chu Yi-ping
    Ye Xiu-zi
    Qian Jiang
    Zhang Yin
    Zhang San-yuan
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (04): : 586 - 592
  • [43] Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications
    Fariselli, Piero
    Savojardo, Castrense
    Martelli, Pier Luigi
    Casadio, Rita
    [J]. ALGORITHMS FOR MOLECULAR BIOLOGY, 2009, 4 : 13
  • [44] Adaptive video segmentation algorithm using hidden conditional random fields
    Chu, Yi-Ping
    Zhang, Yin
    Ye, Xiu-Zi
    Zhang, San-Yuan
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2007, 33 (12): : 1252 - 1258
  • [45] Aneuploidy prediction and tumor classification with heterogeneous hidden conditional random fields
    Barutcuoglu, Zafer
    Airoldi, Edoardo M.
    Dumeaux, Vanessa
    Schapire, Robert E.
    Troyanskaya, Olga G.
    [J]. BIOINFORMATICS, 2009, 25 (10) : 1307 - 1313
  • [46] Robust Incremental Hidden Conditional Random Fields for Human Action Recognition
    Vrigkas, Michalis
    Mastora, Ermioni
    Nikou, Christophoros
    Kakadiaris, Ioannis A.
    [J]. ADVANCES IN VISUAL COMPUTING, ISVC 2018, 2018, 11241 : 126 - 136
  • [47] Viewpoint Insensitive Actions Recognition Using Hidden Conditional Random Fields
    Ji, Xiaofei
    Liu, Honghai
    Li, Yibo
    [J]. KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT I, 2010, 6276 : 369 - +
  • [48] Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications
    Piero Fariselli
    Castrense Savojardo
    Pier Luigi Martelli
    Rita Casadio
    [J]. Algorithms for Molecular Biology, 4
  • [49] Hidden Conditional Random Fields with Distributed User Embeddings for Ad Targeting
    Djuric, Nemanja
    Radosavljevic, Vladan
    Grbovic, Mihajlo
    Bhamidipati, Narayan
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 779 - 784