Convex geometry of max-stable distributions

被引:27
|
作者
Molchanov, Ilya [1 ]
机构
[1] Univ Bern, Dept Math Stat & Actuarial Sci, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
Copula; Max-stable random vector; Norm; Cross-polytope; Spectral measure; Support function; Zonoid;
D O I
10.1007/s10687-008-0055-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that max-stable random vectors in [0, infinity)(d) with unit Frechet marginals are in one to one correspondence with convex sets K in [0, 8)(d) called max-zonoids. The max-zonoids can be characterised as sets obtained as limits of Minkowski sums of cross-polytopes or, alternatively, as the selection expectation of a random cross-polytope whose distribution is controlled by the spectral measure of the max-stable random vector. Furthermore, the cumulative distribution function P{xi <= x} of a max-stable random vector xi with unit Frechet marginals is determined by the norm of the inverse to x, where all possible norms are given by the support functions of (normalised) max-zonoids. As an application, geometrical interpretations of a number of well-known concepts from the theory of multivariate extreme values and copulas are provided.
引用
收藏
页码:235 / 259
页数:25
相关论文
共 50 条
  • [41] Spatial extremes: Max-stable processes at work
    Mathieu, Ribatet
    JOURNAL OF THE SFDS, 2013, 154 (02): : 156 - 177
  • [42] On Extremal Index of Max-Stable Random Fields
    Enkelejd Hashorva
    Lithuanian Mathematical Journal, 2021, 61 : 217 - 238
  • [43] Full likelihood inference for max-stable data
    Huser, Raphael
    Dombry, Clement
    Ribatet, Mathieu
    Genton, Marc G.
    STAT, 2019, 8 (01):
  • [44] Spatial risk measures for max-stable and max-mixture processes
    Ahmed, M.
    Maume-Deschamps, V
    Ribereau, P.
    Vial, C.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (07) : 1005 - 1020
  • [45] On the distribution of a max-stable process conditional on max-linear functionals
    Oesting, Marco
    STATISTICS & PROBABILITY LETTERS, 2015, 100 : 158 - 163
  • [46] ON GENERALIZED MAX-LINEAR MODELS IN MAX-STABLE RANDOM FIELDS
    Falk, Michael
    Zott, Maximilian
    JOURNAL OF APPLIED PROBABILITY, 2017, 54 (03) : 797 - 810
  • [47] Spectral representations of sum- and max-stable processes
    Zakhar Kabluchko
    Extremes, 2009, 12 : 401 - 424
  • [48] Statistical inference for max-stable processes in space and time
    Davis, Richard A.
    Klueppelberg, Claudia
    Steinkohl, Christina
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (05) : 791 - 819
  • [49] Generalized Pickands constants and stationary max-stable processes
    Krzysztof Dȩbicki
    Sebastian Engelke
    Enkelejd Hashorva
    Extremes, 2017, 20 : 493 - 517
  • [50] Canonical spectral representation for exchangeable max-stable sequences
    Jan-Frederik Mai
    Extremes, 2020, 23 : 151 - 169