Statistical inference for max-stable processes in space and time

被引:47
|
作者
Davis, Richard A. [1 ]
Klueppelberg, Claudia [2 ]
Steinkohl, Christina [2 ]
机构
[1] Columbia Univ, New York, NY USA
[2] Tech Univ Munich, D-85748 Garching, Germany
基金
美国国家科学基金会;
关键词
Asymptotic normality; Max-stable space-time process; Pairwise likelihood estimation; Strong consistency; PAIRWISE LIKELIHOOD; FIELDS;
D O I
10.1111/rssb.12012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Max-stable processes have proved to be useful for the statistical modelling of spatial extremes. Several families of max-stable random fields have been proposed in the literature. One such representation is based on a limit of normalized and rescaled pointwise maxima of stationary Gaussian processes that was first introduced by Kabluchko and co-workers. This paper deals with statistical inference for max-stable space-time processes that are defined in an analogous fashion. We describe pairwise likelihood estimation, where the pairwise density of the process is used to estimate the model parameters. For regular grid observations we prove strong consistency and asymptotic normality of the parameter estimates as the joint number of spatial locations and time points tends to . Furthermore, we discuss extensions to irregularly spaced locations. A simulation study shows that the method proposed works well for these models.
引用
收藏
页码:791 / 819
页数:29
相关论文
共 50 条
  • [1] STATISTICAL INFERENCE FOR MAX-STABLE PROCESSES BY CONDITIONING ON EXTREME EVENTS
    Engelke, Sebastian
    Malinowski, Alexander
    Oesting, Marco
    Schlather, Martin
    ADVANCES IN APPLIED PROBABILITY, 2014, 46 (02) : 478 - 495
  • [2] Max-stable processes for modeling extremes observed in space and time
    Richard A. Davis
    Claudia Klüppelberg
    Christina Steinkohl
    Journal of the Korean Statistical Society, 2013, 42 : 399 - 414
  • [3] Max-stable processes for modeling extremes observed in space and time
    Davis, Richard A.
    Klueppelberg, Claudia
    Steinkohl, Christina
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) : 399 - 414
  • [4] Likelihood-Based Inference for Max-Stable Processes
    Padoan, S. A.
    Ribatet, M.
    Sisson, S. A.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 263 - 277
  • [5] Semiparametric estimation for isotropic max-stable space-time processes
    Buhl, Sven
    Davis, Richard A.
    Klueppelberg, Claudia
    Steinkohl, Christina
    BERNOULLI, 2019, 25 (4A) : 2508 - 2537
  • [6] CROSSINGS OF MAX-STABLE PROCESSES
    DAVIS, RA
    RESNICK, SI
    JOURNAL OF APPLIED PROBABILITY, 1994, 31 (01) : 130 - 138
  • [7] Multivariate max-stable spatial processes
    Genton, Marc G.
    Padoan, Simone A.
    Sang, Huiyan
    BIOMETRIKA, 2015, 102 (01) : 215 - 230
  • [8] On the hitting probability of max-stable processes
    Hofmann, Martin
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (11) : 2516 - 2521
  • [9] Exact simulation of max-stable processes
    Dombry, Clement
    Engelke, Sebastian
    Oesting, Marco
    BIOMETRIKA, 2016, 103 (02) : 303 - 317
  • [10] SPACE-TIME MAX-STABLE MODELS WITH SPECTRAL SEPARABILITY
    Embrechts, Paul
    Koch, Erwan
    Robert, Christian
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (0A) : 77 - 97