On-line supervised adaptive training using radial basis function networks

被引:27
|
作者
Fung, CF [1 ]
Billings, SA [1 ]
Luo, W [1 ]
机构
[1] UNIV NEWCASTLE UPON TYNE, NEWCASTLE UPON TYNE NE1 7RU, TYNE & WEAR, ENGLAND
基金
英国工程与自然科学研究理事会;
关键词
radial basis function network; neural network learning algorithm; parameter estimation; adaptive filtering; system identification; dynamical system modelling; model selection; pattern recognition;
D O I
10.1016/S0893-6080(96)00024-X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new recursive supervised training algorithm is derived for the radial basis neural network architecture. The new algorithm combines the procedures of on-line candidate regressor selection with the conventional Givens QR based recursive parameter estimator to provide efficient adaptive supervised network training. A new concise on-line correlation based performance monitoring scheme is also introduced as an auxiliary device to detect structural changes in temporal data processing applications. Practical and simulated examples are included to demonstrate the effectiveness of the new procedures. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:1597 / 1617
页数:21
相关论文
共 50 条
  • [41] Training radial basis function networks using biogeography-based optimizer
    Ibrahim Aljarah
    Hossam Faris
    Seyedali Mirjalili
    Nailah Al-Madi
    Neural Computing and Applications, 2018, 29 : 529 - 553
  • [42] Training radial basis function networks using biogeography-based optimizer
    Aljarah, Ibrahim
    Faris, Hossam
    Mirjalili, Seyedali
    Al-Madi, Nailah
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (07): : 529 - 553
  • [43] On-Line Harmonic Estimation in Power System Based on Sequential Training Radial Basis Function Neural Network
    Almaita, Eyad
    Asumadu, Johnson A.
    2011 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2011,
  • [44] Adaptive stepsize algorithms for on-line training of neural networks
    Magoulas, GD
    Plagianakos, VP
    Vrahatis, MN
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (05) : 3425 - 3430
  • [45] Numerical solution of PDEs via integrated radial basis function networks with adaptive training algorithm
    Chen, Hong
    Kong, Li
    Leng, Wen-Jun
    APPLIED SOFT COMPUTING, 2011, 11 (01) : 855 - 860
  • [46] Confidence-clustering supervised radial basis function neural networks
    Casasent, D
    Chen, XW
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1423 - 1428
  • [47] Function emulation using radial basis function networks
    Chakravarthy, SV
    Ghosh, J
    NEURAL NETWORKS, 1997, 10 (03) : 459 - 478
  • [48] RECURRENT RADIAL BASIS FUNCTION NETWORKS FOR ADAPTIVE NOISE CANCELLATION
    BILLINGS, SA
    FUNG, CF
    NEURAL NETWORKS, 1995, 8 (02) : 273 - 290
  • [49] Adaptive transfer functions in radial basis function (RBF) networks
    Hoffmann, GA
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 682 - 686
  • [50] Adaptive radial basis function networks with kernel shape parameters
    I-Cheng Yeh
    Chung-Chih Chen
    Xinying Zhang
    Chong Wu
    Kuan-Chieh Huang
    Neural Computing and Applications, 2012, 21 : 469 - 480