On-line supervised adaptive training using radial basis function networks

被引:27
|
作者
Fung, CF [1 ]
Billings, SA [1 ]
Luo, W [1 ]
机构
[1] UNIV NEWCASTLE UPON TYNE, NEWCASTLE UPON TYNE NE1 7RU, TYNE & WEAR, ENGLAND
基金
英国工程与自然科学研究理事会;
关键词
radial basis function network; neural network learning algorithm; parameter estimation; adaptive filtering; system identification; dynamical system modelling; model selection; pattern recognition;
D O I
10.1016/S0893-6080(96)00024-X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new recursive supervised training algorithm is derived for the radial basis neural network architecture. The new algorithm combines the procedures of on-line candidate regressor selection with the conventional Givens QR based recursive parameter estimator to provide efficient adaptive supervised network training. A new concise on-line correlation based performance monitoring scheme is also introduced as an auxiliary device to detect structural changes in temporal data processing applications. Practical and simulated examples are included to demonstrate the effectiveness of the new procedures. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:1597 / 1617
页数:21
相关论文
共 50 条
  • [31] Training Radial Basis Function Networks with Differential Evolution
    Yu, Bing
    He, Xingshi
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 11, 2006, 11 : 157 - 160
  • [32] Quantum speedup of training radial basis function networks
    Shao, Changpeng
    Quantum Information and Computation, 2019, 19 (7-8): : 609 - 625
  • [33] Supervised Learning Errors by Radial Basis Function Neural Networks and Regularization Networks
    Neruda, Roman
    Vidnerova, Petra
    2008 SECOND INTERNATIONAL CONFERENCE ON FUTURE GENERATION COMMUNICATION AND NETWORKING SYMPOSIA, VOLS 1-5, PROCEEDINGS, 2008, : 360 - 363
  • [34] On-line Probabilistic Voltage Security Assessment using Radial Basis Function Neural Network
    Singh, Pushpendra
    Titare, L. S.
    Arya, L. D.
    Choube, S. C.
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON ICT IN BUSINESS INDUSTRY & GOVERNMENT (ICTBIG), 2016,
  • [35] Channel estimation for OFDM systems using adaptive radial basis function networks
    Zhou, XB
    Wang, XD
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2003, 52 (01) : 48 - 59
  • [36] An adaptive control method for robot manipulators using radial basis function networks
    Lee, MJ
    Choi, YK
    ISIE 2001: IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS PROCEEDINGS, VOLS I-III, 2001, : 1827 - 1832
  • [37] Adaptive tuning of power system stabilizers using radial basis function networks
    Abido, MA
    Abdel-Magid, YL
    ELECTRIC POWER SYSTEMS RESEARCH, 1999, 49 (01) : 21 - 29
  • [38] Reconstruction of chaotic dynamics using structurally adaptive radial basis function networks
    Stankovic, MS
    Todorovic, BT
    Vidojkovic, BM
    2002 6TH SEMINAR ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING, PROCEEDINGS, 2002, : 33 - 36
  • [39] On Training Radial Basis Function Neural Networks Using Optimal Fuzzy Clustering
    Niros, Antonios D.
    Tsekouras, George E.
    MED: 2009 17TH MEDITERRANEAN CONFERENCE ON CONTROL & AUTOMATION, VOLS 1-3, 2009, : 395 - 400
  • [40] A model-following adaptive controller using radial basis function networks
    Ibayashi, T
    Hoya, T
    Ono, O
    Ishida, Y
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 & 2, 2002, : 820 - 824