Semi-streaming quantization for remote sensing data

被引:7
|
作者
Braverman, A
Fetzer, E
Eldering, A
Nittel, S
Leung, K
机构
[1] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[3] Univ Maine, Dept Spatial Informat Sci & Engn, Orono, ME 04469 USA
[4] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA
关键词
cluster analysis; data compression; data reduction; massive datasets;
D O I
10.1198/1061860032535
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a strategy for reducing the size and complexity of very large, remote sensing datasets acquired from NASA's Earth Observing System. We apply the quantization paradigm from, and algorithms developed in, signal processing to the problem of summarization. Because data arrive in discrete chunks, we formulate a semi-streaming strategy that partially processes chunks as they become available and stores the results. At the end of the summary time period, we re-ingest the partial summaries and summarize them. We show that mean squared errors between the final summaries and the original data can be computed from the mean squared errors incurred at the two stages without directly accessing the original data. The procedure is demonstrated using data from JPL's Atmospheric Infrared Sounder.
引用
收藏
页码:759 / 780
页数:22
相关论文
共 50 条
  • [41] A semi-supervised learning method for remote sensing data mining
    Vatsavai, RR
    Shekhar, S
    Burk, TE
    ICTAI 2005: 17TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 207 - 211
  • [42] Compressed sensing of streaming data
    Freris, Nikolaos M.
    Oecal, Orhan
    Vetterli, Martin
    2013 51ST ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2013, : 1242 - 1249
  • [43] Data-Free Low-Bit Quantization for Remote Sensing Object Detection
    Zhang, Ruiyan
    Jiang, Xiujie
    An, Junshe
    Cui, Tianshu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [44] Research on method of remote sensing data quality contrast among different quantization levels
    Guo, Lidong
    Li, Guoqing
    Guo, Lidong
    PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON REMOTE SENSING, ENVIRONMENT AND TRANSPORTATION ENGINEERING (RSETE 2013), 2013, 31 : 729 - 732
  • [45] Deterministic ( 1+ε)-Approximate Maximum Matching with poly( 1/ε) Passes in the Semi-streaming Model and Beyond
    Fischer, Manuela
    Mitrovic, Slobodan
    Uitto, Jara
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 248 - 260
  • [46] Streaming Remote Sensing Data Processing for the Future Smart Cities: State of the Art and Future Challenges
    Sun, Xihuang
    Liu, Peng
    Ma, Yan
    Liu, Dingsheng
    Sun, Yechao
    INTERNATIONAL JOURNAL OF DISTRIBUTED SYSTEMS AND TECHNOLOGIES, 2016, 7 (01) : 1 - 14
  • [47] FPGA Implementation of MobileNetV2 CNN Model Using Semi-Streaming Architecture for Low Power Inference Applications
    Shaydyuk, Nazariy K.
    John, Eugene B.
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 160 - 167
  • [48] Semi-supervised object detection with uncurated unlabeled data for remote sensing images
    Liu, Nanqing
    Xu, Xun
    Gao, Yingjie
    Zhao, Yitao
    Li, Heng-Chao
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 129
  • [49] Remote sensing of semi-natural elements: Using the Pleiades data for the detection of hedgerows
    Télédétection des éléments semi-naturels : Utilisation des données Pléiades pour la détection des haies
    1600, Soc. Francaise de Photogrammetrie et de Teledetection
  • [50] Online Residual Quantization Via Streaming Data Correlation Preserving
    Li, Pandeng
    Xie, Hongtao
    Min, Shaobo
    Zha, Zheng-Jun
    Zhang, Yongdong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 981 - 994