Semi-streaming quantization for remote sensing data

被引:7
|
作者
Braverman, A
Fetzer, E
Eldering, A
Nittel, S
Leung, K
机构
[1] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[3] Univ Maine, Dept Spatial Informat Sci & Engn, Orono, ME 04469 USA
[4] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA
关键词
cluster analysis; data compression; data reduction; massive datasets;
D O I
10.1198/1061860032535
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a strategy for reducing the size and complexity of very large, remote sensing datasets acquired from NASA's Earth Observing System. We apply the quantization paradigm from, and algorithms developed in, signal processing to the problem of summarization. Because data arrive in discrete chunks, we formulate a semi-streaming strategy that partially processes chunks as they become available and stores the results. At the end of the summary time period, we re-ingest the partial summaries and summarize them. We show that mean squared errors between the final summaries and the original data can be computed from the mean squared errors incurred at the two stages without directly accessing the original data. The procedure is demonstrated using data from JPL's Atmospheric Infrared Sounder.
引用
收藏
页码:759 / 780
页数:22
相关论文
共 50 条
  • [31] A Simple (1-ε)-Approximation Semi-Streaming Algorithm for Maximum (Weighted) Matching
    Assadi, Sepehr
    2024 SYMPOSIUM ON SIMPLICITY IN ALGORITHMS, SOSA, 2024, : 337 - 354
  • [32] An Efficient Semi-Streaming PTAS for Tournament Feedback Arc Set with Few Passes
    Baweja, Anubhav
    Jia, Justin
    Woodruff, David P.
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 215
  • [33] A (2+c)-Approximation for Maximum Weight Matching in the Semi-Streaming Model
    Paz, Ami
    Schwartzman, Gregory
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 2153 - 2161
  • [34] Study on the Background Parameter Quantization Method of Remote Sensing Data Processing
    Jiang Li-jun
    Xing Li-xin
    Pan Jun
    Liang Yi-hong
    Liang Li-heng
    Dong Lin-sen
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 2995 - 2999
  • [35] O( log log n) Passes Is Optimal for Semi-streaming Maximal Independent Set
    Assadi, Sepehr
    Konrad, Christian
    Naidu, Kheeran K.
    Sundaresan, Janani
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 847 - 858
  • [36] Brooks' Theorem in Graph Streams: A Single-Pass Semi-Streaming Algorithm for Δ-Coloring
    Assadi, Sepehr
    Kumar, Pankaj
    Mittal, Parth
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 234 - 247
  • [37] SEMI-DETERMINISTIC ESTIMATION OF EROSION WITH REMOTE SENSING DATA
    Leidig, Mathias
    Gloaguen, Richard
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1359 - 1362
  • [38] An Improved Space Semi-Streaming Algorithm for Submodular Maximization under b-Matching Constraint
    Bao, Shu-Yu
    Nong, Qing-Qin
    Gong, Su-Ning
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024,
  • [39] Semi-streaming Algorithms for Submodular Function Maximization Under b-Matching, Matroid, and Matchoid Constraints
    Huang, Chien-Chung
    Sellier, Francois
    ALGORITHMICA, 2024, : 3598 - 3628
  • [40] Semi-supervised learning of heterogeneous data in remote sensing imagery
    Benedetto, J.
    Czaja, W.
    Dobrosotskaya, J.
    Doster, T.
    Duke, K.
    Gillis, D.
    INDEPENDENT COMPONENT ANALYSES, COMPRESSIVE SAMPLING, WAVELETS, NEURAL NET, BIOSYSTEMS, AND NANOENGINEERING X, 2012, 8401