A survey on semi-supervised learning

被引:1277
|
作者
Van Engelen, Jesper E. [1 ]
Hoos, Holger H. [1 ,2 ]
机构
[1] Leiden Univ, Leiden Inst Adv Comp Sci, Leiden, Netherlands
[2] Univ British Columbia, Dept Comp Sci, Vancouver, BC, Canada
关键词
Semi-supervised learning; Machine learning; Classification; UNLABELED DATA; RANDOM FOREST; MANIFOLD REGULARIZATION; ROBUST; CLASSIFICATION; ALGORITHM; MACHINE; SOFTWARE; DROPOUT; GRAPH;
D O I
10.1007/s10994-019-05855-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised learning is the branch of machine learning concerned with using labelled as well as unlabelled data to perform certain learning tasks. Conceptually situated between supervised and unsupervised learning, it permits harnessing the large amounts of unlabelled data available in many use cases in combination with typically smaller sets of labelled data. In recent years, research in this area has followed the general trends observed in machine learning, with much attention directed at neural network-based models and generative learning. The literature on the topic has also expanded in volume and scope, now encompassing a broad spectrum of theory, algorithms and applications. However, no recent surveys exist to collect and organize this knowledge, impeding the ability of researchers and engineers alike to utilize it. Filling this void, we present an up-to-date overview of semi-supervised learning methods, covering earlier work as well as more recent advances. We focus primarily on semi-supervised classification, where the large majority of semi-supervised learning research takes place. Our survey aims to provide researchers and practitioners new to the field as well as more advanced readers with a solid understanding of the main approaches and algorithms developed over the past two decades, with an emphasis on the most prominent and currently relevant work. Furthermore, we propose a new taxonomy of semi-supervised classification algorithms, which sheds light on the different conceptual and methodological approaches for incorporating unlabelled data into the training process. Lastly, we show how the fundamental assumptions underlying most semi-supervised learning algorithms are closely connected to each other, and how they relate to the well-known semi-supervised clustering assumption.
引用
收藏
页码:373 / 440
页数:68
相关论文
共 50 条
  • [31] Adversarial Dropout for Supervised and Semi-Supervised Learning
    Park, Sungrae
    Park, JunKeon
    Shin, Su-Jin
    Moon, Il-Chul
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3917 - 3924
  • [32] Supervised and semi-supervised machine learning ranking
    Vittaut, Jean-Noel
    Gallinari, Patrick
    COMPARATIVE EVALUATION OF XML INFORMATION RETRIEVAL SYSTEMS, 2007, 4518 : 213 - 222
  • [33] A survey on semi-supervised graph clustering
    Daneshfar, Fatemeh
    Soleymanbaigi, Sayvan
    Yamini, Pedram
    Amini, Mohammad Sadra
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133 (133)
  • [34] A Survey on Semi-supervised Learning for Delayed Partially Labelled Data Streams
    Gomes, Heitor Murilo
    Grzenda, Maciej
    Mello, Rodrigo
    Read, Jesse
    Le Nguyen, Minh Huong
    Bifet, Albert
    ACM COMPUTING SURVEYS, 2023, 55 (04)
  • [35] Semi-Supervised Learning via Regularized Boosting Working on Multiple Semi-Supervised Assumptions
    Chen, Ke
    Wang, Shihai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (01) : 129 - 143
  • [36] Semi-supervised Neighborhood Preserving Discriminant Embedding: A Semi-supervised Subspace Learning Algorithm
    Mehdizadeh, Maryam
    MacNish, Cara
    Khan, R. Nazim
    Bennamoun, Mohammed
    COMPUTER VISION - ACCV 2010, PT III, 2011, 6494 : 199 - +
  • [37] Semi-supervised metric learning via topology preserving multiple semi-supervised assumptions
    Wang, Qianying
    Yuen, Pong C.
    Feng, Guocan
    PATTERN RECOGNITION, 2013, 46 (09) : 2576 - 2587
  • [38] Efficiently Learning the Graph for Semi-supervised Learning
    Sharma, Dravyansh
    Jones, Maxwell
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1900 - 1910
  • [39] Adaptive Active Learning for Semi-supervised Learning
    Li Y.-C.
    Xiao F.
    Chen Z.
    Li B.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (12): : 3808 - 3822
  • [40] POSITIVE UNLABELED LEARNING BY SEMI-SUPERVISED LEARNING
    Wang, Zhuowei
    Jiang, Jing
    Long, Guodong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2976 - 2980