Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding

被引:61
|
作者
Lyzinski, Vince [1 ]
Sussman, Daniel L. [2 ]
Minh Tang [3 ]
Athreya, Avanti [3 ]
Priebe, Carey E. [3 ]
机构
[1] Johns Hopkins Univ, Human Language Technol Ctr Excellence, Baltimore, MD 21211 USA
[2] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[3] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
来源
关键词
Clustering; stochastic block model; degree corrected stochastic block model; VERTEX CLASSIFICATION; CONSISTENCY;
D O I
10.1214/14-EJS978
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Vertex clustering in a stochastic blockmodel graph has wide applicability and has been the subject of extensive research. In this paper, we provide a short proof that the adjacency spectral embedding can be used to obtain perfect clustering for the stochastic blockmodel and the degree-corrected stochastic blockmodel. We also show an analogous result for the more general random dot product graph model.
引用
收藏
页码:2905 / 2922
页数:18
相关论文
共 50 条
  • [1] A Consistent Adjacency Spectral Embedding for Stochastic Blockmodel Graphs
    Sussman, Daniel L.
    Tang, Minh
    Fishkind, Donniell E.
    Priebe, Carey E.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (499) : 1119 - 1128
  • [2] On spectral embedding performance and elucidating network structure in stochastic blockmodel graphs
    Cape, Joshua
    Minh Tang
    Priebe, Carey E.
    NETWORK SCIENCE, 2019, 7 (03) : 269 - 291
  • [3] SPECTRAL CLUSTERING AND THE HIGH-DIMENSIONAL STOCHASTIC BLOCKMODEL
    Rohe, Karl
    Chatterjee, Sourav
    Yu, Bin
    ANNALS OF STATISTICS, 2011, 39 (04): : 1878 - 1915
  • [4] Tracking the Adjacency Spectral Embedding for Streaming Graphs
    Larroca, Federico
    Bermolen, Paola
    Fiori, Marcelo
    Marenco, Bernardo
    Mateos, Gonzalo
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 847 - 851
  • [5] Tracking the Adjacency Spectral Embedding for Streaming Graphs
    Larroca, Federico
    Bermolen, Paola
    Fiori, Marcelo
    Marenco, Bernardo
    Mateos, Gonzalo
    Conference Record - Asilomar Conference on Signals, Systems and Computers, 2022, 2022-October : 847 - 851
  • [6] On Spectral Algorithms for Community Detection in Stochastic Blockmodel Graphs With Vertex Covariates
    Mu, Cong
    Mele, Angelo
    Hao, Lingxin
    Cape, Joshua
    Athreya, Avanti
    Priebe, Carey E.
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3373 - 3384
  • [7] Doubly unfolded adjacency spectral embedding of dynamic multiplex graphs
    Baum, Maximilian
    Passino, Francesco Sanna
    Gandy, Axel
    arXiv,
  • [8] An algorithmic embedding of graphs via perfect matchings
    Rödl, V
    Rucinski, A
    Wagner, M
    RANDOMIZATION AND APPROXIMATION TECHNIQUES IN COMPUTER SCIENCE, 1998, 1518 : 25 - 34
  • [9] Spectral Clustering on Spherical Coordinates Under the Degree-Corrected Stochastic Blockmodel
    Passino, Francesco Sanna
    Heard, Nicholas A.
    Rubin-Delanchy, Patrick
    TECHNOMETRICS, 2022, 64 (03) : 346 - 357
  • [10] Neuronal classification from network connectivity via adjacency spectral embedding
    Mehta, Ketan
    Goldin, Rebecca F.
    Marchette, David
    Vogelstein, Joshua T.
    Priebe, Carey E.
    Ascoli, Giorgio A.
    NETWORK NEUROSCIENCE, 2021, 5 (03) : 689 - 710