New Type Soliton Solutions to Korteweg-de Vries and Benjamin-Bona-Mahony Equations

被引:2
|
作者
Liu Yu [1 ]
机构
[1] Henan Elect Power Res Inst, Zhengzhou 450052, Peoples R China
关键词
COMPACTON SOLUTIONS; EXPLICIT; BBM;
D O I
10.1088/0256-307X/27/9/090201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Korteweg-de Vries equation and the Benjamin-Bona-Mahony equation, and obtain three kinds of new type soliton solutions, i.e. peakon solutions, double-peak (peaked-point and peaked-compacton) soliton solutions. A double solitary wave with blow-up points is also contained.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Some new solitonary solutions of the modified Benjamin-Bona-Mahony equation
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Waheed, Asif
    Al-Said, Eisa A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (04) : 2126 - 2131
  • [42] Exact solutions of four generalized Benjamin-Bona-Mahony equations with any order
    Liu, Xun
    Tian, Lixin
    Wu, Yuhai
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) : 8602 - 8613
  • [43] Global strong solutions to nonlocal Benjamin-Bona-Mahony equations with exponential nonlinearities
    Tuan, Nguyen Huy
    Nghia, Bui Dai
    Tuan, Nguyen Anh
    BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 199
  • [44] Exact solutions of four generalized Benjamin-Bona-Mahony equations with any order
    Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
    Appl. Math. Comput., 17 (8602-8613):
  • [45] Local discontinuous Galerkin finite element method for the nonlinear Korteweg-de Vries-Benjamin-Bona-Mahony-Burgers equation
    Chand, Abhilash
    Mohapatra, Jugal
    PHYSICS OF FLUIDS, 2025, 37 (03)
  • [46] Exact solutions to a generalized Benjamin-Bona-Mahony equation
    Chen, Jing
    Lai, Shaoyong
    Qing, Yin
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,
  • [47] On the analytical and numerical solutions of the Benjamin-Bona-Mahony equation
    Yokus, Asif
    Sulaiman, Tukur Abdulkadir
    Bulut, Hasan
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (01)
  • [48] HIERARCHIES OF KORTEWEG-DE VRIES TYPE EQUATIONS
    SVININ, AK
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (02) : 814 - 827
  • [49] The traveling wave solutions for generalized Benjamin-Bona-Mahony equation
    Liu, Xiaohua
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (03):
  • [50] Unique continuation for the Benjamin-Bona-Mahony and Boussinesq's equations
    Mario Davila
    Gustavo Perla Menzala
    Nonlinear Differential Equations and Applications NoDEA, 1998, 5 : 367 - 382