New Type Soliton Solutions to Korteweg-de Vries and Benjamin-Bona-Mahony Equations

被引:2
|
作者
Liu Yu [1 ]
机构
[1] Henan Elect Power Res Inst, Zhengzhou 450052, Peoples R China
关键词
COMPACTON SOLUTIONS; EXPLICIT; BBM;
D O I
10.1088/0256-307X/27/9/090201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Korteweg-de Vries equation and the Benjamin-Bona-Mahony equation, and obtain three kinds of new type soliton solutions, i.e. peakon solutions, double-peak (peaked-point and peaked-compacton) soliton solutions. A double solitary wave with blow-up points is also contained.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Exact Solutions and Conservation Laws for a Coupled Benjamin-Bona-Mahony Equations
    Mhlanga, Isaiah Elvis
    Khalique, Chaudry Masood
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [32] Benjamin-Bona-Mahony Equations with Memory and Rayleigh Friction
    Dell'Oro, Filippo
    Mammeri, Youcef
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (02): : 813 - 831
  • [33] Spatial Analyticity of Solutions to Korteweg-de Vries Type Equations
    Bouhali, Keltoum
    Moumen, Abdelkader
    Tajer, Khadiga W.
    Taha, Khdija O.
    Altayeb, Yousif
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2021, 26 (04)
  • [34] Soliton-like solutions of higher order wave equations of the Korteweg-de Vries type
    Tzirtzilakis, E
    Marinakis, V
    Apokis, C
    Bountis, T
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) : 6151 - 6165
  • [35] Exact Solutions of the Generalized Benjamin-Bona-Mahony Equation
    Liu, Xun
    Tian, Lixin
    Wu, Yuhai
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [36] Asymptotic behavior of solutions for the time-delayed equations of Benjamin-Bona-Mahony’s type
    Feng Wei
    Pu Zhilin
    Zhu Chaosheng
    Boundary Value Problems, 2015
  • [37] Multiple Soliton Solutions for a Variety of Coupled Modified Korteweg-de Vries Equations
    Wazwaz, Abdul-Majid
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (10-11): : 625 - 631
  • [38] Asymptotic behavior of solutions for the time-delayed equations of Benjamin-Bona-Mahony's type
    Feng Wei
    Pu Zhilin
    Zhu Chaosheng
    BOUNDARY VALUE PROBLEMS, 2015,
  • [40] On special properties of solutions to the Benjamin-Bona-Mahony equation
    Hong, Christian
    Ponce, Gustavo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 393 : 321 - 342