Security Analysis of Poisoning Attacks Against Multi-agent Reinforcement Learning

被引:0
|
作者
Xie, Zhiqiang [1 ]
Xiang, Yingxiao [1 ]
Li, Yike [1 ]
Zhao, Shuang [1 ]
Tong, Endong [1 ]
Niu, Wenjia [1 ]
Liu, Jiqiang [1 ]
Wang, Jian [1 ]
机构
[1] Beijing Jiaotong Univ, Beijing Key Lab Secur & Privacy Intelligent Trans, Beijing 100044, Peoples R China
来源
ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT I | 2022年 / 13155卷
基金
国家重点研发计划;
关键词
Reinforcement learning; Multi-agent system; Soft actor-critic; Poisoning attack; Security analysis;
D O I
10.1007/978-3-030-95384-3_41
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
As the closest machine learning method to general artificial intelligence, multi-agent reinforcement learning (MARL) has shown great potential. However, there are few security studies on MARL, and related security problems also appear, especially the serious misleading caused by the poisoning attack on the model. The current research on poisoning attacks for reinforcement learning mainly focuses on single-agent setting, while there are few such studies for multiagent RL. Hence, we propose an analysis framework for the poisoning attack in the MARL system, taking the multi-agent soft actor-critic algorithm, which has the best performance at present, as the target of the poisoning attack. In the framework, we conduct extensive poisoning attacks on the agent's state signal and reward signal from three different aspects: the modes of poisoning attacks, the impact of the timing of poisoning, and the mitigation ability of the MARL system. Experiment results in our framework indicate that 1) compared to the baseline, the random poisoning against state signal reduces the average reward by as high as -65.73%; 2) the timing of poisoning has completely opposite effects on reward-based and state-based attacks; and 3) the agent can completely alleviate the toxicity when the attack interval is 10000 episodes.
引用
收藏
页码:660 / 675
页数:16
相关论文
共 50 条
  • [31] MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning
    Malysheva, Aleksandra
    Kudenko, Daniel
    Shpilman, Aleksei
    2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 171 - 176
  • [32] TEAM POLICY LEARNING FOR MULTI-AGENT REINFORCEMENT LEARNING
    Cassano, Lucas
    Alghunaim, Sulaiman A.
    Sayed, Ali H.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3062 - 3066
  • [33] Aggregation Transfer Learning for Multi-Agent Reinforcement learning
    Xu, Dongsheng
    Qiao, Peng
    Dou, Yong
    2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 547 - 551
  • [34] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [35] Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
    Xu, Zhiwei
    Zhang, Bin
    Li, Dapeng
    Zhang, Zeren
    Zhou, Guangchong
    Chen, Hao
    Fan, Guoliang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11726 - 11734
  • [36] Concept Learning for Interpretable Multi-Agent Reinforcement Learning
    Zabounidis, Renos
    Campbell, Joseph
    Stepputtis, Simon
    Hughes, Dana
    Sycara, Katia
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1828 - 1837
  • [37] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [38] Learning structured communication for multi-agent reinforcement learning
    Junjie Sheng
    Xiangfeng Wang
    Bo Jin
    Junchi Yan
    Wenhao Li
    Tsung-Hui Chang
    Jun Wang
    Hongyuan Zha
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [39] Generalized learning automata for multi-agent reinforcement learning
    De Hauwere, Yann-Michael
    Vrancx, Peter
    Nowe, Ann
    AI COMMUNICATIONS, 2010, 23 (04) : 311 - 324
  • [40] Multi-agent reinforcement learning for character control
    Li, Cheng
    Fussell, Levi
    Komura, Taku
    VISUAL COMPUTER, 2021, 37 (12): : 3115 - 3123