Existence and uniqueness theorem on weak solutions to the parabolic-elliptic Keller-Segel system

被引:23
|
作者
Kozono, Hideo [1 ]
Sugiyama, Yoshie [2 ]
Yahagi, Yumi [3 ]
机构
[1] Waseda Univ, Dept Math, Tokyo 1698555, Japan
[2] Osaka City Univ, Dept Math, Osaka 5588585, Japan
[3] Tsuda Univ, Dept Math, Tokyo 1878577, Japan
关键词
REGULARITY; EQUATIONS; LP;
D O I
10.1016/j.jde.2012.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In R-n (n >= 3), we first define a notion of weak solutions to the Keller-Segel system of parabolic-elliptic type in the scaling invariant class L-s(0, T; L-r (R-n)) for 2/s + n/r = 2 with n/2 < r < n. Any condition on derivatives of solutions is not required at all. The local existence theorem of weak solutions is established for every initial data in L-n/2(R-n). We prove also their uniqueness. As for the marginal case when r = n/2, we show that if n >= 4, then the class C([0, T); L-n/2(R-n)) enables us to obtain the only weak solution. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2295 / 2313
页数:19
相关论文
共 50 条